检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,以基于DeepSpeed的Qwen-VL模型为例,为用户提供了多模态理解模型在ModelArts Standard上的全量微调和LoRA微调方案。 本方案目前仅适用于部分企业客户,
发布和管理AI Gallery项目 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台,选择“开发环境
解析Manifest文件 解析Manifest文件,支持本地和OBS。如果是OBS,需要Session信息。 manifest.parse_manifest(manifest_path, encoding='utf-8') 示例代码 通过Manifest路径来解析获取Manifest的信息。
订阅Workflow 在AI Gallery中,您可以查找并订阅免费的Workflow。订阅成功的Workflow通过AI Gallery导入后可以直接在ModelArts控制台使用。 AI Gallery中分享的Workflow支持免费订阅,但在使用过程中如果消耗了硬件资源进行
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
SD3基于Lite Server适配PyTorch NPU的训练指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
导出ModelArts数据集中的数据到AI Gallery 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出到AI Gallery。用户可以通过任务历史查看数据导出的历史记录。发布到AI Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
发布Notebook 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台。
LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展LLaMA-VID的推理过程。 约束限制 本方案目前仅适用于企业客户。
Paraformer基于Lite Server适配PyTorch NPU推理指导(6.3.911) 方案概览 本方案介绍了在ModelArts Lite Lite Server上使用昇腾计算资源Ascend Snt9B开展Paraformer的推理过程。 约束限制 本方案目前仅适用于企业客户。
使用Notebook进行代码调试 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情。当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。
计费样例 计费场景一 某用户于2023/03/18 15:30:00使用一个按需计费的公共资源池进行训练,规格配置如下: 规格:CPU: 8 核 32GB (modelarts.vm.cpu.8ud) 计算节点个数:1个 用了一段时间后,于2023/03/20 10:30:00停
导入模型 导入模型功能包括: 初始化已存在的模型,根据模型ID生成模型对象。 创建模型。模型对象的属性,请参见查询模型详情。 示例模型文件 以PyTorch为例,编写模型文件。PyTorch模型包结构可参考模型包规范介绍。 OBS桶/目录名 ├── resnet │ ├── model
moondream2基于Lite Server适配PyTorch NPU推理指导 方案概览 本文档从模型部署的环境配置、模型转换、模型推理等方面进行介绍moondream2模型在ModelArts Lite Server上部署,支持NPU推理场景。 本方案目前仅适用于部分企业客户
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训