检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题
6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
准备权重 获取对应模型的权重文件,获取链接参考表1。 在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件
约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提示词,用来为整个对话设定场景或提供指导原则。 history: 一个列表,包含之前轮次的对话记录,每一对都是用户消息和模型回复。这有助于保持对话的一致性和连贯性。
TP×PP×CP)的值进行整除。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提示词,用来为整个对话设定场景或提供指导原则。 history: 一个列表,包含之前轮次的对话记录,每一对都是用户消息和模型回复。这有助于保持对话的一致性和连贯性。
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.908)
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行微调训练任务 查看日志和性能 训练脚本说明 附录:微调训练常见问题 父主题: LLM大语言模型训练推理
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
loss收敛情况:日志里存在lm loss参数 ,lm loss的值随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理