检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题: 服务部署
看上传进度和速度。 将本地文件上传,请参考支持上传本地文件; GitHub的开源仓库的文件上传,请参考支持Clone GitHub开源仓库; 存放在OBS中的文件上传,请参考支持上传OBS文件; 类似开源数据集这样的远端文件上传,请参考支持上传远端文件; 在Notebook的使用
MaaS是白名单功能,如果有试用需求,请先申请权限。 应用场景 ModelArts Studio大模型即服务平台(MaaS)的应用场景: 业界主流开源大模型覆盖全 MaaS集成了业界主流开源大模型,含Llama、Baichuan、Yi、Qwen模型系列,所有的模型均基于昇腾AI云服务进行全面适配和优化,使得
方便自定义,预置镜像已经在SWR仓库中,通过对预置镜像的扩展完成自定义镜像注册。 安全可信,基于安全加固最佳实践,访问策略、用户权限划分、开发软件漏洞扫描、操作系统安全加固等方式,确保镜像使用的安全性。 ModelArts的自定义镜像使用场景 当用户对深度学习引擎、开发库有特殊需求场景的时
看csv文件及图片等功能。可以说,JupyterLab是开发者们下一阶段更主流的开发环境。 ModelArts支持通过JupyterLab工具在线打开Notebook,开发基于PyTorch、TensorFlow和MindSpore引擎的AI模型。具体操作流程如图1 使用JupyterLab在线开发调试代码所示。
大规模分布式训练能力,加速大模型研发 提供高性价比国产算力 多年软硬件经验沉淀,AI场景极致优化 加速套件,训练、推理、数据访问多维度加速 一站式端到端生产工具链,一致性开发体验 开“箱”即用,涵盖AI开发全流程,包含数据处理、模型开发、训练、管理、部署功能,可灵活使用其中一个或多个功能。 支持本地
s完成AI开发的流程和操作。 LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907) 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6
日志提示“No module name 'unidecode'” 问题现象 从mindspore开源gitee中master分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代
Standard上运行GPU单机单卡训练任务 操作流程 准备工作 购买服务资源(OBS和SWR) 配置权限 创建专属资源池(不需要打通VPC) 安装和配置OBS命令行工具 (可选)工作空间配置 模型训练 本地构建镜像及调试 上传镜像 上传数据和算法到OBS 使用Notebook进行代码调试 创建单机单卡训练作业
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
使用OBS客户端上传文件的操作指导:上传文件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。 MoXing提供了一
ModelArts CLI命令功能介绍 功能介绍 ModelArts CLI,即ModelArts命令行工具,是一个跨平台命令行工具,用于连接ModelArts服务并在ModelArts资源上执行管理命令。用户可以使用交互式命令行提示符或脚本通过终端执行命令。为了方便理解,下面将ModelArts
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代
转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benchmark工具用于精度验证,主要工作
repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下
定义镜像。 Notebook自定义镜像规范 制作自定义镜像时,Base镜像需满足如下规范: 基于昇腾、Dockerhub官网等官方开源的镜像制作,开源镜像需要满足如下操作系统约束: x86:Ubuntu18.04、Ubuntu20.04 ARM:Euler2.8.3、Euler2
在模型广场查看模型 在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型模板,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型模板,用于创建模型。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
Studio基于Llama3-8B模型实现新闻自动分类 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910) 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910) 主流开源大模型基于Lite Cluster适配PyTorch