检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
错误,通常是由于作业的资源配置不足、数据倾斜、网络问题或任务过多导致的。 解决方案: 设置并发数:通过设置合适的并发数,可以启动多任务并行运行,从而提高作业的处理能力。 例如访问DWS大批量数据库数据时设置并发数,启动多任务的方式运行,避免作业运行超时。 具体并发设置可以参考对接
Flink 1.15版本说明 数据湖探索(DLI)遵循开源Flink计算引擎的发布一致性。本文介绍Flink 1.15版本所做的变更说明。 更多Flink 1.15版本说明请参考Release Notes - Flink Jar 1.15、Flink OpenSource SQL1
对接的DLI服务的Region。 根据Spark应用程序的需要,修改“spark-defaults.conf”中的配置项,配置项兼容开源Spark配置项,参考开源Spark的配置项说明。 使用Spark-submit提交Spark作业 进入工具文件bin目录,执行spark-submit命令,并携带相关参数。
Spark 3.1.1版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 3.1.1版本所做的变更说明。 更多Spark 3.1.1版本说明请参考Spark Release Notes。 Spark 3.1.1版本发布时间 版本名称 发布时间
Flink 1.12版本说明 数据湖探索(DLI)遵循开源Flink计算引擎的发布一致性。本文介绍Flink 1.12版本所做的变更说明。 更多Flink 1.12版本说明请参考Release Notes - Flink 1.12。 Flink 1.12版本发布时间 版本名称 发布时间
DLI服务的Spark组件是全托管式服务,用户对Spark组件不感知,仅仅可以使用该服务,且接口为封装式接口。 DLI的这种模式减轻了运维负担,可以更专注于数据处理和分析任务本身。 具体请参考《数据湖探索用户指南》。 MRS服务Spark组件的是建立在客户的购买MRS服务所分配的虚机上,用户可以根据实际需求调整
仅支持YARN集群。 上下游数据连接 除了开源connector之外,还提供开箱即用的connector,包括数据库(RDS、GaussDB)、消息队列(DMS)、数据仓库(DWS)、对象存储(OBS) 相比开源connector有较多易用性和稳定性提升。 仅提供开源connector。 开发与运维
Spark 3.3.1版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 3.3.1版本所做的变更说明。 更多Spark 3.3.1版本说明请参考Spark Release Notes。 Spark 3.3.1版本发布时间 版本名称 发布时间
Spark 2.4.5版本说明 数据湖探索(DLI)遵循开源Spark计算引擎的发布一致性。本文介绍Spark 2.4.5版本所做的变更说明。 更多Spark 2.4.5版本说明请参考Spark Release Notes。 Spark 2.4.5版本发布时间 版本名称 发布时间
使用Spark Jar作业读取和查询OBS数据 操作场景 DLI完全兼容开源的Apache Spark,支持用户开发应用程序代码来进行作业数据的导入、查询以及分析处理。本示例从编写Spark程序代码读取和查询OBS数据、编译打包到提交Spark Jar作业等完整的操作步骤说明来帮助您在DLI上进行作业开发。
配置DLI对接AOM Prometheus监控 AOM服务提供的Prometheus监控是一种全面对接开源Prometheus生态的监控解决方案。它支持多种类型的组件监控,提供预置监控大盘和全面托管的Prometheus服务,通过Prometheus监控来统一采集、存储和显示监控
配置DBT连接DLI进行数据调度和分析 DBT(Data Build Tool),是一款开源的数据建模和转换工具,运行在Python环境上。DBT连接DLI,用来定义和执行SQL转换,支持从数据集成、转换到分析的整个数据生命周期管理,适用于大规模数据分析项目和复杂的数据分析场景。
聚合值。和 GROUP BY 聚合不同, OVER 聚合不会把结果通过分组减少到一行,它会为每行输入增加一个聚合值。 更多介绍和使用请参考开源社区文档:Over聚合。 语法格式 1 2 3 4 5 6 7 SELECT agg_func(agg_col) OVER (
使用Livy提交Spark Jar作业 DLI Livy简介 DLI Livy是基于开源的Apache Livy用于提交Spark作业到DLI的客户端工具。 准备工作 创建DLI队列。在“队列类型”中选择“通用队列”,即Spark作业的计算资源。具体请参考创建队列。 准备一个li
使用Notebook实例提交DLI作业 Notebook是基于开源JupyterLab进行了深度优化的交互式数据分析挖掘模块,提供在线的开发和调试能力,用于编写和调测模型训练代码。完成DLI对接Notebook实例后,您可以基于Notebook提供的Web交互的开发环境同时完成代
况下,Hive表只能在查询时跟踪其最新版本。最新版本的表保留了Hive表的所有数据。 注意事项 每个连接子任务都需要保留自己的Hive表缓存。请确保Hive表可以放入TM任务槽的内存中。 建议为streaming-source.monitor-interval(最新分区作为临时表)或
好的作业执行环境。 您可以根据作业的计算需求和数据规模分配资源、调整任务执行顺序,调度不同的弹性资源池或队列资源以适应不同的工作负载。待提交作业所需的CUs需小于等于弹性资源池的剩余可用CUs,才可以确保作业任务的正常执行。 本节操作介绍查看弹性资源池计算资源使用情况、作业所需CU数的查看方法。
理能力,适用于大规模计算任务场景和有长期资源规划需求的业务场景,灵活应对业务对计算资源变化的需求。 发布区域:全部 创建弹性资源池 OBS 2.0支持 弹性资源池队列 创建弹性资源池后,您可以在弹性资源池中创建多个队列,队列关联到具体的作业和数据处理任务,是资源池中资源被实际使用
勾选“开启Checkpoint”,依据自身业务情况调整Checkpoint间隔和模式。Flink Checkpoint机制可以保证Flink任务突然失败时,能够从最近的Checkpoint进行状态恢复重启。 图5 checkpoint参数 “Checkpoint间隔”为两次触发Ch
Integer 子作业ID,对应开源spark JobData的jobId。 name 否 String 子作业name,对应开源spark JobData的name。 description 否 String 子作业description,对应开源spark JobData的description。