检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和GPU对齐。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
场景介绍 方案概览 本文档介绍了在ModelArts的Standard上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程,利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
0.5。 本案例仅支持在专属资源池上运行。 支持的模型列表 本方案支持的模型列表、对应的开源权重获取地址如表1所示。 表1 支持的模型列表和权重获取地址 序号 支持模型 支持模型参数量 开源权重获取地址 1 Llama llama-7b https://huggingface.c
#昇腾vLLM使用的算子模块 ├── ascend.txt #基于开源vLLM适配过NPU的patch脚本 ├── autosmoothquant_ascend.txt #基于开源autosmoothquant适配过NPU的patch脚本
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.5.901) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 执行微调训练任务 查看日志和性能 训练脚本说明 附录:微调训练常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
场景介绍 方案概览 本文档介绍了在ModelArts的Standard上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程,利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
支持的模型列表 本方案支持的模型列表、对应的开源权重获取地址如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。