检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1]['input_ids'].append(self.tokenizer
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance
使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根据具体报错信息定位到报错的代码行,分析上下文逻辑。
场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训练得到的,而在特定任务上,这些模型的参数可能并不都是最合适的,因此需要进行微调。 AI Galler
doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1]['input_ids'].append(self.tokenizer
doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1]['input_ids'].append(self.tokenizer
doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1]['input_ids'].append(self.tokenizer
doc_ids.append(sentence_ids) if len(doc_ids) > 0 and self.args.append_eod: doc_ids[-1]['input_ids'].append(self.tokenizer
数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题:
Kubernetes Kubernetes是一个开源的容器编排部署管理平台,用于管理云平台中多个主机上的容器化应用。Kubernetes的目标是让部署容器化的应用简单并且高效,Kubernetes提供了应用部署、规划、更新、维护的一种机制。使用Lite Cluster需要用户具备一定的Kubern
从上图报错日志判断,预测失败是模型推理代码编写有问题。 解决方法 根据日志报错提示,append方法中缺少必填参数,修改模型推理代码文件“customize_service.py”中的代码,给append方法中传入合理的参数。 如需了解更多模型推理代码编写说明,请参考模型推理代码编写说明。
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
Standard推理服务支持VPC直连的高速访问通道配置 ModelArts Standard的WebSocket在线服务全流程开发 从0-1制作自定义镜像并创建模型 使用AppCode认证鉴权方式进行在线预测
运行中服务出现告警时,在事件中出现建议:内存不足,请增加内存。 图2 内存不足提示样例2 原因分析 部署或升级时出现该提示,可能原因是选择的计算节点规格内存太小,无法满足应用部署,请增大内存规格。 运行中服务告警中出现该提示,可能代码有问题导致内存溢出或者业务使用量太大导致内存需求增多。 处理方法 在部署或升级
模型构建和开发时选择对应的数据集版本进行使用。 关于数据集版本 针对刚创建的数据集(未发布前),无数据集版本信息,必须执行发布操作后,才能应用于模型开发或训练。 数据集版本,默认按V001、V002递增规则进行命名,您也可以在发布时自定义设置。 您可以将任意一个版本设置为当前目录
传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的表现力,提供更丰富的用户体验,或是获取更全面的数据分析结果。例如,在实际应用场景中,可以通过结合图像和文本信息来进行更好的对象识别或情感分析。 此外,多模态还可以细分为以下几个方面: 多模态理解:如何让计算机从不同
功能介绍 主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。主要应用场景如下: 可以用于需要根据不同的输入值来决定后续执行流程的场景。例如:需要根据训练节点输出的精度信息来决定是重新训练还是进行模型的注册操作时可以使用该节点来实现流程的控制。
} } ] 一维表格 [ { "key": "Application Evaluation Results", "title": "Application Evaluation Results", "type":
动发布的功能。数据集版本发布节点主要用于将已存在的数据集或者标注任务进行版本发布,每个版本相当于数据的一个快照,可用于后续的数据溯源。主要应用场景如下: 对于数据标注这种操作,可以在标注完成后自动帮助用户发布新的数据集版本,结合as_input的能力提供给后续节点使用。 当模型训