检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
径。“输出路径”不能与“保存路径”为同一路径,且“输出路径”不能是“保存路径”的子目录。 图1 导出新数据集 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。当导出方式选择为新数据集时,在导出成功后,您可以前往“数据集”列表中,查看到新的数据集。 在“数据集概览页”
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 为指定的Notebook添加资源标签。例如设置TMS标签的key为“test”,value为“service-gpu”。 https://{endpoint}/v1/{project_
参数类型 说明 id 是 String SFS Turbo 文件系统 ID。 src_path 是 String SFS Turbo 文件系统地址。 dest_path 是 String 训练作业的本地路径。 read_only 否 Boolean dest_path 是否为只读权限,默认为读写权限。
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
模型的自定义镜像制作流程 在Notebook中通过镜像保存功能制作自定义镜像用于推理 在Notebook中通过Dockerfile从0制作自定义镜像用于推理 在ECS中通过Dockerfile从0制作自定义镜像用于推理 父主题: 制作自定义镜像用于ModelArts Standard
Standard专属资源池 ModelArts支持使用ECS创建专属资源池吗? 在ModelArts中1个节点的专属资源池,能否部署多个服务? 在ModelArts中公共资源池和专属资源池的区别是什么? ModelArts中的作业为什么一直处于等待中? ModelArts控制台为什么能看到创建失败被删除的专属资源池?
Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite # 设置目标设备上下文为Ascend,指定device_id为0。
V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模式设置成V1然后用V1的方式修改规避,也可以直接file_io._LARGE_FILE_TASK_NUM=1。 复制文件夹时可采用: mox.file
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
是否自动停止:为了避免资源浪费,建议您打开该开关,根据您的需求,选择自动停止时间,也可以自定义自动停止的时间。 图2 选择计算节点规格 图3 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤六:预测分析 运行完成
执行的时长。 events 否 Array of strings 执行的事件。 labels 否 Array of strings 为执行记录设置的标签。 data_requirements 否 Array of DataRequirement objects 节点steps使用到的数据。
String 表格数据集,HDFS路径。例如/datasets/demo。 ip 否 String 用户GaussDB(DWS)集群的IP地址。 port 否 String 用户GaussDB(DWS)集群的端口。 queue_name 否 String 表格数据集,DLI队列名。
前支持“按节点比例”和“按实例数量”两种滚动方式。 按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。
专属资源池类型归一:不再区分训练、推理专属资源池。如果业务允许,您可以在一个专属资源池中同时跑训练和推理的Workload。同时,也可以通过“设置作业类型”来开启/关闭专属资源池对特定作业类型的支持。 自助专属池网络打通:可以在ModelArts管理控制台自行创建和管理专属资源池所属
问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim
规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b SEQ_LEN=4096 TP(tensor model
ain.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。
是否自动停止:为避免资源浪费,建议打开自动停止开关,根据您的实际需要,选择自动停止时间,也可以自定义自动停止的时间。 图3 选择计算节点规格 图4 设置自动停止 参数填写完毕之后,单击运行状况右边的“继续运行”,单击确认弹窗中的“确定”即可继续完成工作流的运行。 步骤五:预测分析 运行完成