检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
认值) data_source 否 ProcessorDataSource object 数据来源,与inputs二选一。数据源路径不支持设置为KMS加密桶中的OBS路径。 description 否 String 数据处理任务描述,长度为0-256位,不能包含^!<>=&"'特殊字符。
size参数,指定-1时为per-channel权重量化,W4A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-ha
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
zer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams llm = LLM(model="facebook/opt-125m"
Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配。
py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py --model-path /home/ma-user/llama-2-7b/
模型基本信息参数说明 参数名称 说明 名称 模型名称。支持1~64位可见字符(含中文),名称可以包含字母、中文、数字、中划线、下划线。 版本 设置所创建模型的版本。第一次导入时,默认为0.0.1。 说明: 模型创建完成后,可以通过创建新版本,导入不同的元模型进行调优。 描述 模型的简要描述。
训练脚本说明 训练脚本存放目录说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
时需清理运行Notebook实例时存储到云硬盘中的数据和其他存储到对象存储服务中的数据,以免继续扣费。 您可以在“费用中心 > 总览”页面设置“可用额度预警”功能,当可用额度、通用代金券和现金券的总额度低于预警阈值时,系统自动发送短信和邮件提醒。 当产生欠费后,请您及时充值使可用额度大于0。
在资源池详情页面,单击“配置管理”,在配置管理页面,可以修改设置监控的命名空间、修改集群配置,配置镜像预热信息。 单击监控的图标,可以开启或关闭监控信息,并设置监控的命名空间。监控使用请参考使用Prometheus查看Lite Cluster监控指标。 单击集群配置的图标,可以设置绑核、Dropcache、大页
依赖的算法资产发布新版本,版本号也自动增加。 Workflow资产白名单设置: 在资产第一次发布时,可以通过release_to_gallery方法的visibility+group_users字段进行设置,后续需要对指定资产进行用户白名单添加或删除操作时,可执行如下命令: from
用户在cbc选择的折扣信息。 os.modelarts/service.console.url String 订购订单支付完成后跳转的url地址。 os.modelarts/order.id String 订单id,包周期资源池创建或者计费模式变更的时候该参数必需。 os.modelarts/flavor
训练脚本说明 训练脚本参数说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配。
py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py --model-path /home/ma-user/llama-2-7b/