检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
删除点边 执行删除操作会永久的删除您选中的点和边,该操作不可逆,请谨慎考虑。 点详情弹窗,可查看节点的相关信息。 把鼠标移动到想要查看的非虚化节点上,会自动显示出该节点的id、label,属性等信息。 图10 点详情信息 弹窗最多能显示节点的6个属性。当该节点的属性大于6个时,您可以到
产品优势 大规模 高效的数据组织,让您更有效的对百亿节点千亿边规模的数据进行查询与分析。 高性能 深度优化的分布式图形计算引擎,为您提供高并发、秒级多跳的实时查询能力。 查询分析一体 查询分析一体化,提供丰富的图分析算法,为关系分析、路径的规划、营销推荐等业务提供多样的分析能力。 简单易用
角色权限 角色是IAM最初提供的一种根据用户的工作职能定义权限的粗粒度授权机制。只包含系统角色,不可自定义角色。 表1 GES系统角色 角色名称 描述 Tenant Guest 普通租户用户。 操作权限:可以对GES资源执行查看操作。 作用范围:项目级服务。 GES Administrator
云监控服务可以对GES的运行状态进行日常监控。您可以通过云监控管理控制台,直观地查看各项监控指标。 监控数据的获取与传输会花费一定时间,因此,云监控数据显示的是当前时间5~10分钟前的状态。如果您的图刚创建完成,请等待5~10分钟后查看监控数据。 前提条件 创建的图运行状态正常运行。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
导出图 可将图数据导出至自定义的OBS目录下。 内存版的图支持 1.0.3 以上版本的图数据导出。 持久化版的图支持2.3.14及以上版本的图数据导出。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“图管理”。 在图管理列表中,选择需导出的图,在“操作”列选择“更多”>“导出”。
标签:统计当前画布中所有的标签名称和对应的点边数量。 节点权重Top10:当前图中边数量最多的十个节点。 以下图统计信息为例,图中共有7个标签。标签为FUND_PRODV的点有5个,标签为FIN_PRODV的点有3个。 图中权重最大的是节点id为1101的点,共有5条边。排名第十的是节点id为1103的点,共有1条边。
PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以
类型 取值范围 edges 是 需匹配的子图的边集, 点的ID要求为非负整数 String 标准CSV格式,边的起点与终点之间以英文逗号分隔,各边之间以换行符“\n”分隔,例如:“1,2\n2,3”。 vertices 是 需匹配的子图上各点的label String 标准CSV格
连通分量算法(Connected Component) 概述 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量(weakly connected component)。连通分量算法(Connected
图名称。 sourceVertex 是 String 边的起点。 targetVertex 是 String 边的终点。 label(持久化版) 否 String 边的label值。 sortKey(持久化版) 否 String 重复边的sortKey值。 sortKeyType(持久化版)
根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1.0/{project_id}/
取值为lazy时,采用流式解析cypher的策略,cypher返回体不常驻内存。 取值为eager时为获取整个json后解析。 limit 流速控制,默认值100000,内核以批的形式返回给server侧的webapp,由webapp整理成流返回给前端。limit的含义为内核返回给webapp时的批的大小。对同
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
历史查询 在运维监控页面左侧导航栏单击“监控>历史查询”,进入历史查询页面,该页面展示了图实例历史上运行过的异步任务的详情(和业务面任务中心展示的一样)。 图1 历史查询页面 父主题: 监控
查询边详情(1.0.0) 功能介绍 根据边的起点、终点以及索引,查询边的详细信息,返回边上的标签和属性等。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/edges/detail?source={sourceVertex}&
由于GES软件版本不断升级,旧版本的图可以通过“升级”操作升级为新版本的图。 当前仅支持 1.0.3 以上版本的图的升级功能。 具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏,选择“图管理”。 在图管理列表中,选择需升级的图,在“操作”列选择“更多”>“升级”。 在弹出的升级提示框中,选择“版本”和是否“强制升级”。
云监控服务可以对GES的运行状态进行日常监控。您可以通过云监控管理控制台,直观地查看各项监控指标。 监控数据的获取与传输会花费一定时间,因此,云监控数据显示的是当前时间5~10分钟前的状态。如果您的图刚刚创建完成,请等待5~10分钟后查看监控数据。 前提条件 创建的图运行状态正常运行。
Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。 适用场景 聚类系数算法(Cluster