检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
gallery_train文件列表 文件类型 文件说明 “train_params.json” 必选文件,训练参数文件,定义了模型训练的必要参数,例如训练方式、超参信息。该参数会显示在微调工作流的“作业设置”页面的算法配置和超参数设置里面。代码示例请参见train_params.json示例。 “dataset_readme
择快捷键,然后在标签文本输入框中输入新的标签名称,然后单击“确定”。 选中的音频将被自动移动至“已标注”页签,且在“未标注”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、各标签对应的音频数量。 快捷键的使用说明:为标签指定快捷键后,当您选择一段音频后,在键盘中按快
"$VC_MAIN_HOSTS" ]]; then # 针对 Lite Cluster CCE 集群平台 # 获取 RANK_TABLE_FILE 的信息 RANKTABLE_RESULT=$(python $SHELL_FOLDER/../tools/get_ranktable.py)
”、“VC_TASK_INDEX”、“MA_NUM_GPUS”为ModelArts训练容器中预置的环境变量。训练容器环境变量详细介绍可参考查看训练容器环境变量。 通过obsutils,将代码文件夹放到OBS上,然后通过OBS将代码传至SFS相应目录中。 在SFS中将代码文件Swi
接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:to
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/wor
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/
les.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中d
JupyterLab是一个交互式的开发环境,是Jupyter Notebook的下一代产品,可以使用它编写Notebook、操作终端、编辑Markdown文本、打开交互模式、查看csv文件及图片等功能。 父主题: Standard功能介绍
--datasets mmlu_gen ceval_gen -w ${output_path} output_path: 要保存的结果路径。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
--datasets mmlu_gen ceval_gen -w ${output_path} output_path: 要保存的结果路径。 Step2 查看精度测试结果 默认情况下,评测结果会按照result/{model_name}/的目录结果保存到对应的测试工程。执行多少次,则会在{mod
les.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中d
接而成;如果以openai接口方式启动服务,API接口公网地址与"/v1/completions"拼接而成。部署成功后的在线服务详情页中可查看API接口公网地址。 图1 API接口公网地址 --app-code:获取方式见访问在线服务(APP认证)。 --tokenizer:to
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/
练大规模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 handler-name参数说明 数据集预处理中 --handler-name 都会传递参数,用于构建实际处理数据的ha
les.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中d
己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)
Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909)