检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts上训练模型如何配置输入输出数据? ModelArts支持用户上传自定义算法创建训练作业。上传自定义算法前,请完成创建算法并上传至OBS桶。创建算法请参考开发用于预置框架训练的代码。创建训练作业请参考创建训练作业指导。 解析输入路径参数、输出路径参数 运行在Mo
推理部署使用场景 AI模型开发完成后,在ModelArts服务中可以将AI模型创建为模型,将模型快速部署为推理服务,您可以通过调用API的方式把AI推理能力集成到自己的IT平台,或者批量生成推理结果。 图1 推理简介 训练模型:可以在ModelArts服务中进行,也可以在您的本地
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16
ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path,
权限策略和授权项 策略及授权项说明 数据管理权限 开发环境权限 训练作业权限 模型管理权限 服务管理权限 工作空间管理权限 DevServer权限
W8A16量化 什么是W8A16量化 使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
W4A16量化 大模型推理中,模型权重数据类型(weight),推理计算时的数据类型(activation)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化
API/SDK 安装ModelArts SDK报错“ERROR: Could not install packages due to an OSError” ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错 调用API创建训练作业,训练作业异常 用户执行huaweicloud
主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
在MaaS体验模型服务 在ModelArts Studio大模型即服务平台,运行中的模型服务可以在“模型体验”页面在线体验模型服务的推理效果。 前提条件 在“模型部署”的服务列表存在“运行中”的模型服务。 操作步骤 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.907) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MR
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题:
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
Function Calling介绍 使用场景 大语言模型的Function Calling能力允许模型调用外部函数或服务,以扩展其自身的能力,执行它本身无法完成的任务。以下是一些Function Calling的使用场景: 表1 Function Calling使用场景说明 使用场景