检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
IsADirectoryError(21, 'Is a directory'). update products failed! 原因分析 用户代码中设置的目标路径(local_path)有误。 处理方法 需要将local_path路径设置为文件夹且后缀必须以“/”结尾。 父主题: API/SDK
等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
在ModelArts控制台的总览页,支持查看生产概况(即总体作业运行数量)、资源占用情况、训练作业资源利用情况。您可以单击生产概况的链接、资源池名称、训练作业,跳转到对应界面查看更多详情。 图1 总览页查看监控信息 在总览页查看全部事件时,如果顶部事件总数和底部的“总条数”数量不一致,请刷新重试。
且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 ModelArts通过对DB的数据进行
上报就不计费,各个服务开始计费的状态如下。 微调大师:“训练中” AI应用:“运行中” 在线推理服务:“运行中” 计费规则 资源整点扣费,按需计费。 计费的最小单位为秒,话单上报后的每一小时对用户账号进行一次扣费。如果使用过程中暂停、终止了消耗资源的AI Gallery工具链服务
镜像过大Push任务一直在运行,或实例节点有问题。 解决方法 以对应租户的华为云账号登录SWR服务,查看镜像是否已经Push成功。 如果Push成功,请重新注册镜像。 如果未Push成功,联系SRE查看对应实例的节点是否有问题。 父主题: 自定义镜像故障
object API已授权的APP的基本信息。 表5 AppAuthApiAuthInfo 参数 参数类型 描述 api_id String API编号。 authed_apps Array of ApigAppDetailInfo objects API已授权的APP的基本信息。 表6 ApigAppDetailInfo
取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项
方式二:通过AOM查看所有监控指标 ModelArts Standard上报的所有监控指标都保存在AOM中,当ModelArts控制台可以查看的指标不满足诉求时,用户可以通过AOM服务提供的指标消费和使用的能力来查看指标。设置指标阈值告警、告警上报等,都可以直接在AOM控制台操作。
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
委托名称前缀固定为ma_agency。 如该字段为iam-user01,则创建出来的委托名称为ma_agency_iam-user01。 默认为空,表示创建名称为modelarts_agency的委托。 响应参数 无 请求示例 创建ModelArts委托。设置委托名称后缀为“iam-user01”。
配置ModelArts授权。若没有授权,ModelArts训练管理、开发环境、数据管理、在线服务等功能将不能正常使用。该API支持管理员给IAM子用户设置委托,支持设置当前用户的访问密钥。调用该API需要在IAM系统里配置Security Administrator权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。