检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它
使用AI Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训
Code的Terminal中使用ModelArts SDK完成数据上传至OBS。首先在本地VS Code中单击上方菜单栏的“Terminal”。在Terminal中输入python并回车,进入python环境。 python 然后在本地VS Code的Terminal中使用ModelArts
不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。
服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。 本章节的示例代码都是在ModelArts
保存Notebook实例 通过预置的镜像创建Notebook实例,在基础镜像上安装对应的自定义软件和依赖,在管理页面上进行操作,进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(ho
当链接关闭后失效;新打开建立的链接只允许当前设置的IP进行访问。 此处的IP地址,请填写外网IP地址。如果用户使用的访问机器和华为云ModelArts服务的网络有隔离,则访问机器的外网地址需要在主流搜索引擎中搜索“IP地址查询”获取,而不是使用ipconfig或ifconfig/ip命令在本地查询。
ache”目录,用户可以使用此目录来储存临时文件。 当前开发环境的Cache盘使用时,没有容量告警,在使用时很容易超过限制,并直接重启Notebook实例。重启后多种配置重置,会导致用户数据丢弃,环境丢失,造成很不好的使用体验。因此需要提供cache盘使用情况的监控和告警,并将数据上报至AOM平台。
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于tra
Notebook”页面,打开“查看所有”开关,可以看到IAM项目下所有子账号创建的Notebook实例。 按实例名称、实例ID、实例状态、使用的镜像、实例规格、实例描述、创建时间等单个筛选或组合筛选。 给子账号配置查看所有Notebook实例的权限 当子账号被授予“listAll
在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定
启动/停止实例 由于运行中的Notebook将一直耗费资源,您可以通过停止操作,停止资源消耗。对于停止状态的Notebook,可通过启动操作重新使用Notebook。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间 > Notebook”,进入Notebook管理页面。
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
用合适的框标注物体作为训练集,进行训练输出模型。适用于一张图片中要识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构化数据的模型自动训练应用,能够对结构化数据进行分类或者数据预测。可用于用户画像分析,实现精确营
单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行
域单击“上传”,选择本地音频进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签中添加音频并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。
单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习物体检测项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测
单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出测试结果。如模型准确率不满足预期,可在“数据标注”页签中添加数据并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 表1 预测结果中的参数说明
(可选)本地安装ma-cli 使用场景 本文以Windows系统为例,介绍如何在Windows环境中安装ma-cli。 Step1:安装ModelArts SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。