检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
链接、国内车牌号、IP地址、MAC地址、IMEI、护照、车架号等个人敏感信息进行数据脱敏,或直接删除敏感信息。 中文简繁转换 将中文简体和中文繁体进行转换。 符号标准化 查找文本中携带的非标准化符号进行标准化、统一化转换。 统一空格:将所有Unicode空格(如U+00A0、U+
该镜头片段将按时长进行进一步拆分。 数据过滤 视频裁剪 裁剪视频中字幕/Logo/水印/黑框等无用信息,生成新视频。 视频元数据过滤 基于视频元数据进行过滤,包括帧率、分辨率和视频时长。注:电影标准帧率为24或30FPS。 宽高比过滤 根据视频的宽高比进行过滤。 数据打标 视频鉴黄评分
调用科学计算大模型 使用“能力调测”调用科学计算大模型 使用该功能调用部署后的预置服务对区域海洋要素等场景进行预测。 使用“能力调测”调用科学计算大模型 使用API调用科学计算大模型 可调用科学计算API接口对区域海洋要素等场景进行预测。 使用API调用科学计算大模型 数据工程使用流程 ModelArts
环节。 数据加工 通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。此外,用户还可以创建自定义算子,针对特定业务场景和模型需求,灵活地进行数据加工,从而进一步优化数据处理流程,提高模型的准确性和鲁棒性。
析,逆向实现快速问题追踪,提升数据运维和数据治理的效率,帮助用户更好地对数据进行追根溯源。另外平台还提供了完善的标签体系、支持数据按行业标准进行分类、按行业标准进行安全分级、内置场景分类标签。帮助用户进行数据分类、数据质量控制和数据资产管理,提升数据治理的效率和效果。 通过整合上
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在
常在训练初期使用较小的学习率,并逐步增加,直到达到预设的最大学习率。通过这种方式,热身比例能够避免初期更新过快,从而帮助模型更好地收敛。 学习率衰减比率 用于控制训练过程中学习率下降的幅度。 计算公式为:最低学习率 = 初始学习率 × 学习率衰减比率。 权重衰减系数 通过在损失函
科学计算大模型的学习率调优策略如下: 学习率太小时,损失曲线几乎是一条水平线,下降非常缓慢,此时可以增大学习率,使用学习率预热(Warm-up)的方法,在训练初期逐步增加学习率,避免初始阶段学习率过小。 学习率太大时,损失曲线剧烈震荡,甚至出现梯度爆炸的问题,可以使用学习率衰减(De
微调场景介绍 盘古科学计算大模型的区域海洋要素模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。 目前,区域海洋要素模型支持微调、预训练两种操作: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以
“加工数据集”。 数据加工:数据加工旨在通过使用数据集加工算子对数据进行预处理操作,针对不同类型的数据集,平台设计了专用的加工算子,以确保数据符合模型训练的标准和业务需求。 数据合成:数据合成利用预置或自定义的数据指令对原始数据集进行处理,并根据设定的轮数生成新的数据。 数据标注
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
训练资源:训练单元可用于所有大模型的模型训练、模型压缩功能。 推理资源:推理单元可用于NLP、CV、专业大模型的模型推理功能, 模型实例可用于预测、科学计算大模型的模型推理功能。 具体订购步骤如下: 使用主账户登录ModelArts Studio大模型开发平台,单击“立即订购”进入“订购”页面。 在“开发场景”中
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
深海变量预测结果与真实结果之间差距的指标。 该值越小,表示模型在高空(深海)变量的预测精度越高。 表面Loss(海表Loss) 表面Loss(海表Loss)是衡量模型在表面层次变量或在海表变量预测结果与真实结果之间差距的指标。 该值越小,表示模型在表面(海表)变量的预测精度越高。
选择“科学计算大模型”。 场景 选择模型场景,分为“全球中期天气要素预测”、“全球中期降水预测”、“全球中期海洋智能预测”、“区域中期海洋智能预测”、“全球中期海洋生态智能预测”、“全球中期海浪智能预测”。 全球中期天气要素预测模型可以选择1个或者多个模型进行部署。 部署模型 在“从资产选模型”选择所需模型。
重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建用户并使用他们进行日常管理工作。 用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可以查看账号ID和用户ID
越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个
合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。
越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个
更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本