检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选中的音频将被自动移动至“已标注”页签,且在“未标注”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、各标签对应的音频数量。 快捷键的使用说明:为标签指定快捷键后,当您选择一段音频后,在键盘中按快捷键,即可为此音频增加为此快捷键对应的标签。例如“aa”标签对应的快捷键是“1”
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个
ModelArts平台提供的自动难例发现功能,在智能标注以及数据采集筛选过程中,将自动标注出难例,建议对难例数据进一步确认标注,然后将其加入训练数据集中,使用此数据集训练模型,可得到精度更高的模型。首先,针对智能标注和采集筛选任务,难例的发现操作是系统自动执行的,无需人工介入,仅需针对标注后的数
/usr/bin/sh: exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以通过查看模型详情看到配置的系统运行架构。基础镜像的系统架构详情可以参考推理基础镜像列表。
描述 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 search_type 否 String 过滤方式。可选值如下: equal表示精确匹配。 contain表示模糊匹配。
source同时出现。 data_source 否 Array<Object> 训练作业使用的数据集。不可与data_url或dataset_id/dataset_version_id同时使用。请查看表4 spec_id 是 Long 训练作业选择的资源规格ID。请从查询作业资源
的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时
“site-package”中才能运行。但是在ModelArts可以将“project_dir”加入到“sys.path”中解决该问题。 使用from module_dir import module_file来导包,代码结构如下: project_dir |- main.py |-
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。
size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
参数类型。 continuous:指定时表示这个超参是连续类型的。连续类型的超参在算法使用于训练作业时,控制台显示为输入框。 discrete:指定时表示这个超参是离散类型的。离散类型的超参在算法使用于训练作业时,控制台显示为下拉选择框架。 lower_bound String 超参下界。
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。
精度问题根因和表现种类很多,会导致问题定位较为复杂,一般还是需要GPU上充分稳定的网络(包含混合精度)再到NPU上排查精度问题。常见的精度调测手段,包含使用全精度FP32,或者关闭算子融合开关等,先进行排查。对于精度问题,系统工程人员需要对算法原理有较深入的理解,仅从工程角度分析有时候会非常受
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。
Long 训练作业的引擎ID。 engine_name String 训练作业的引擎名称。 engine_version String 训练作业使用的引擎版本。 请求示例 如下以查看训练作业的资源引擎规格为例。 GET https://endpoint/v1/{project_id}/job/ai-engines
“角色”支持“Labeler”、“Reviewer”和“Team Manager”,“Team Manager”只能设置为一个人。 删除团队 当已有的团队不再使用,您可以执行删除操作。 在“标注团队”管理页面中,选中需删除的团队,然后单击“删除”。在弹出的对话框中,确认信息无误后,单击“确定”完成团队删除。
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个
会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。 图2 自定义存储配置 使用Notebook将OBS数据导入云硬盘EVS 打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled
@modelarts:from_type String 内置属性:三元组关系标签的起始实体类型,创建关系标签时必须指定,该参数仅文本三元组数据集使用。 @modelarts:rename_to String 内置属性:重命名后的标签名。 @modelarts:shortcut String
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个