检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备操作 注册账号并实名认证 购买TICS服务 授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 获取认证信息 空间管理 组建空间 管理空间 代理管理 部署代理 管理代理 管理数据 管理任务 管理算法 审计日志 作业管理 多方安全计算作业 可信联邦学习作业 联邦预测作业
b22f6d964d274" } 状态码 状态码 描述 200 执行联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
"host_f40_10w" } 状态码 状态码 描述 200 获取横向联邦学习作业详情成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
"NEW" } ] } 状态码 状态码 描述 200 查询多方安全计算作业列表成功 401 操作无权限 500 内部服务器错误 父主题: 多方安全计算作业管理
Region对应的项目ID和账号ID。 注册并登录管理控制台。 在用户名的下拉列表中单击“我的凭证”。 在“API凭证”页面,查看账号名和账号ID,在项目列表中查看项目ID。 调用API获取项目ID 项目ID可以通过调用IAM服务的查询指定条件下的项目信息API获取,接口为“GET
调用计算节点API时,需要获取TICS服务计算节点所在虚机的IP:Port。 获取计算节点所在虚机的IP:Port 用户可在对应页面查看计算节点所在虚机的IP:Port。 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”。 在“计算节点管理”页面,查找需要发布数据的
企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS多方安全计算进行联合样本分布统计
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
企业A单击“执行”并等待一段时间之后,可以在页面下方“执行结果”看到sql的运行结果。 也可以通过“作业管理 > 多方安全计算 > 历史作业 > 查看结果”查看对应的结果。 父主题: 使用TICS多方安全计算进行联合样本分布统计
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
指计算节点所属的CCE或IEF容器的工作负载,目前支持“OBS存储”和“主机存储”方式。“OBS存储”方式是将OBS服务中的路径映射到服务容器内的本地路径,“主机存储”方式是指将计算节点所在机器的本地路径映射到服务容器内的本地路径。 主机路径 挂载使用的容器外部的路径,用于服务容器内和外部数据交互。用户只有
l-connector-java-8.0.20.jar\\\",\\\"properties\\\":\\\"\\\"}\",\"auth_type\":\"PWD\"}"' --form 'file=@"/D:/mysql-connector-java-8.0.20.jar"'
String 可信节点所在空间的版本 nat_id String 可信节点使用的网关的Id storage_mount_type String 可信节点使用的存储方式,HOST_PATH本地存储,OBS对象云存储,SFS_TURBO极速文件存储 表5 TicsAgentDeployBcs
算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。
f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用TICS可信联邦学习进行联邦建模
概述 欢迎使用可信智能计算服务TICS (Trusted Intelligent Computing Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
、获取。 文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。
某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 基于
某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据