检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
同时该网络的解除关联SFS Turbo按钮置灰不可操作。 图3 关联SFS Turbo状态 原因分析 ModelArts缺少SFS Turbo委托权限导致关联或解除关联失败。 处理方法 需要您给ModelArts配置SFS Turbo委托权限,配置步骤请参考最佳实践的“委托授权ModelArts云服务使用SFS
常见错误原因和解决方法 显存溢出错误 网卡名称错误 mc2融合算子报错 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.909)
id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 worker_id 是 String 标注团队成员ID。 workforce_id 是 String 标注团队ID。 请求参数 无 响应参数
预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括: {pt, sft}. 新增
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 mc2融合算子报错 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912) mc2融合算子报错 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6
Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
常见错误原因和解决方法 显存溢出错误 网卡名称错误 联网下载SimSun.ttf时可能会遇到网络问题 在运行finetune_ds.sh 时遇到报错 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
ome/ma-user/anaconda3/envs/MindSpore 如果使用的基础镜像不是ModelArts提供的公共镜像,需要在Dockerfile文件中添加ModelArts指定的用户和用户组,具体可参考Dockerfile文件(基础镜像为非ModelArts提供)。 构建镜像
Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
注意事项? 镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么? 如何保证自定义镜像能不因为超过35G而保存失败? 如何减小本地或ECS构建镜像的目的镜像的大小? 镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗? 在ModelA
在LLM推理应用中,经常会面临具有长system prompt的场景以及多轮对话的场景。长system prompt的场景,system prompt在不同的请求中但是相同的,KV Cache的计算也是相同的;多轮对话场景中,每一轮对话需要依赖所有历史轮次对话的上下文,历史轮次中的KV Cache在后续每一轮中
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 task_name 是 String 标注任务的名称。 task_type 是 Integer 标注任务的类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1