检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询名称中包含dataset的数据集列表 dataset_list = Dataset.list_datasets(session, dataset_name="dataset") print(dataset_list) 示例四:分页查询数据集列表 # 默认一次返回10条数据集记录,可通过设置limit和offset进行分页查询
strings 订阅的主题。 entity String 订阅的主体。 events Array of strings 订阅的事件。 请求示例 创建消息订阅。设置订阅的主题为“fengbin26”,订阅的主题为“238947895793875835893490”,订阅的事件为“[ "*:failed
方式二:通过AOM查看所有监控指标 ModelArts Standard上报的所有监控指标都保存在AOM中,当ModelArts控制台可以查看的指标不满足诉求时,用户可以通过AOM服务提供的指标消费和使用的能力来查看指标。设置指标阈值告警、告警上报等,都可以直接在AOM控制台操作。具体参见通
String 服务器所属的超节点资源id。 表5 Endpoints 参数 参数类型 描述 allowed_access_ips Array of strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有
max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenize
Integer 资源规格的弹性使用量,物理池该值和count相同。 azs Array of azs objects 资源所在的AZ的数量。 nodePool String 节点池名称。比如:nodePool-1。 表15 azs 参数 参数类型 描述 az String AZ的名称。 count
镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 准备数据 登录coco数据集下载官网地址:https://cocodataset.org/#download 下载coco2017数据集的Train(18GB)、Val images(1GB)、Train/Val
执行代码、模型需先上传至OBS(训练作业生成的模型已默认存储到OBS)。 接口约束 使用模板导入模型与不使用模板导入这两类导入方式的Body参数要求不一样。以下Body参数说明中以模板参数表示适合使用模板导入模型时填写的参数,非模板参数表示适合不使用模板导入时填写的参数,公共参数表示与导入方式无关的参数。 使用
error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 为指定的Notebook添加资源标签。例如设置TMS标签的key为“test”,value为“service-gpu”。 https://{endpoint}/v1/{pr
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有
低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取
权重百分比,分配到此模型的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 {
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管理训练日志、训练结果和训练配置,使用ya
在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1
在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶。 请确保您使用的OBS与ModelArts在同一区域。 表1 OBS桶文件夹列表