检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
热门推荐的主要应用场景是什么? 热门推荐只要适用于首页、热点类场景,满足流行度统计,有效吸引新用户。 父主题: 智能场景
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
效果评估 创建效果评估可以对服务设置指标,查看推荐效果的反馈,可以根据系统提供的指标添加。 创建效果评估作业 登录RES管理控制台,在左侧导航栏中选择“推荐业务>智能场景”,默认进入“智能场景”列表。 在智能场景列表中,单击“运行中”状态的目标场景名称,进入详情页。 单击“效果评
管理计算资源 计算资源DLI服务,添加的计算资源需根据实情情况进行合理分配。开通DLI集群大小就是根据业务需求对集群进行扩容缩容,计算资源最多设置5个。计算资源支持的操作包括: 创建计算资源 编辑计算资源 删除计算资源 创建计算资源 登录RES管理控制台,在“全局配置”页面的计算资源区域,单击“创建”添加计算资源。
在线服务获得推荐的调用次数如何计算? RES从全局角度计算在线服务获得推荐的调用次数,不区分每次调用的用户。例如A用户调用请求推荐接口是每秒5次,B用户调用请求推荐接口每秒5次,当A用户和B用户同时调用此接口时,总的获得推荐的调用请求为A用户和B用户之和,即5+5=10。 父主题:
API查询列表的接口返回结果是否支持分页? API查询列表的接口不支持分页。 父主题: 基础问题
数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据会实时入库
重新运行被在线服务所引用的召回策略,是否需要重新部署在线服务? 不需要。重新执行召回策略,产生新的候选集会被在线服务直接引用,无需重启在线服务。 父主题: 自定义场景
名,用于存储生成的用户数据。 物品画像表:用户自定义CloudTable集群名称和表名,用于存储生成的物品数据。 设置数据版本:您可以单击设置数据版本。RES的数据版本有两种,“V1”版本即数据按照原有格式存储,未做过分区处理。“V2”版本则会依照用户的分区设置做分区处理,当分区
如果开启“自定义行为类型”, 算法则按用户设置的行为类型及权重进行排序预处理任务,否则默认使用数据源中的行为类型及权重进行任务。 “正向行为类型”:设置正向行为的类型及权重值。 “负向行为类型”:设置负向行为的类型及权重值。 行为去重方式 将行为数据中某个用户对某个物品的多条记录进行去重,目前支持
创建在线服务用于部署上线服务、更新模型。配置实时计算的逻辑,包括设置在线流量、组装推荐结果和设置排序策略。根据策略做在线推荐结果融合、过滤、重排以及多流程之间的AB,并返回最终结果。 创建在线服务 获取推荐结果 - 您可以通过在线服务预测结果,也可以通过API接口获取最终的推荐结果。 获取推荐结果 (可选)效果评估
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。
说明 融合 “推荐结果设置” “添加推荐候选集”(选择离线或近线任务所生成的推荐候选集进行排序) 任务别名和UUID:单击操作列表的“选择”添加离线或近线的任务名称和候选集ID。 优先级:优先级高的推荐结果将确保展示在优先级低的之前。 同优先级数据占比:优先级相同的推荐候选集,该占比
什么是RES? 与其他云服务的关系 如何开始使用RES? 获取访问密钥(AK/SK) 推荐作业有哪几种创建方式? 创建的场景是否会立即发布? 最小在线并发规格支持弹性伸缩,是否设置最小规格即可? 是否有样例数据支撑我进一步了解RES? 什么是区域、可用区? API查询列表的接口返回结果是否支持分页?
增加用户特征。单击特征后方的删除不需要的用户特征。 物品特征 列表中展示抽取的物品特征和参数类型,此特征会额外应用于所选字段的功能。您可以根据业务需求单击增加物品特征。单击特征后方的删除不需要的物品特征。 您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中:
“调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。可在此下拉框中勾选具体的时间点。 “时间间隔(小时)”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。 设置完成后,单击“确定”,重新导入数据。 父主题: 数据质量管理
代码:输入预测代码,单击“预测”后显示预测结果,如图1所示。输入用户ID、推荐数量,根据您设置的策略返回用户的预测结果。如果是关联推荐,需要配置“物品项”,即推荐与物品项相关的产品。如果物品项有多个,需要用英文逗号隔开。 图1 代码预测 表单:输入“ID”,并设置“最大推荐个数”。其中ID可以为用户ID或者物品ID,
match_infos 进行召回匹配的参数配置,即搜索的匹配信息。 label:客体的属性名称(可为字符串或字符串数组类型)。 value:相应的属性值。 weight:该属性值的匹配权重,多个匹配条件做加权汇总后按分值从大到小给出候选集。 filter_info 搜索的过滤信息。 black_list:客体需要过滤的黑名单。