检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook、代码上传、提交训练作业、将训练日志获取到本地展示等,用户只需要专注于本地的代码开发即可。 本章节介绍如何使用PyCharm
创建训练任务 调试代码 创建训练任务之前,建议先调试代码。 由于Notebook的/cache目录只能支持500G的存储,超过后会导致实例重启,ImageNet数据集大小超过该限制,因此建议用线下资源调试、或用小批量数据集在Notebook调试(Notebook调试方法与使用No
程。 面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。
可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 在ModelArts的专属资源池中添加标签。 可以在创建ModelArts
policy”原则。该设计原则更推荐直接复制粘贴代码,而不是进行抽象处理。因此,与模型前向运算相关的所有源代码都被直接复制粘贴到同一个文件中,而不是调用某些抽象提取出的模块化库。Diffusers的这种设计原则的好处是代码简单易用、对代码贡献者友好。然而,这种反软件结构化的设计也有明
在Notebook中安装 在总览页面进入CodeLab。 在“Notebook”区域下,新建一个ipynb文件。 在新建的Notobook中,在代码输入栏输入如下命令。 !pip install xxx 在Terminal中安装 在Terminal里激活需要的anaconda python环境后再进行安装。
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts SDK目前只提供Python语言的SDK,同时支持大于3.7.x版本且小于3.10.x版本的Python版本,推荐使用3
使用MoXing训练模型,“global_step”放在Adam名称范围下,而非MoXing代码中没有Adam名称范围,如图1所示。其中1为使用MoXing代码,2代表非MoXing代码。 图1 代码示例 处理方法 Fine Tune就是用别人训练好的模型,加上自己的数据,来训练新的模
获取支持的超参搜索算法。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/search-algorithms 表1 路径参数 参数 是否必选
接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/images 表1 路径参数 参数 是否必选 参数类型 描述
该链接查看论文详细内容。 编辑完成后单击“保存”完成修改。 编辑代码 选择“代码”页签,单击右上方的“编辑”,可以选择“代码是否开放”。 订阅期满之前,下架代码不开放的算法不影响已订阅用户的使用。再次发布该算法代码开放后,主页列表不展示已经下架的算法,但用户可以在“我的Gallery
OBS连接不稳定可能会出现报错,“Unable to connect to endpoint”。 处理方法 对于OBS连接不稳定的现象,通过增加代码来解决。您可以在代码最前面增加如下代码,让TensorFlow对ckpt和summary的读取和写入可以通过本地缓存的方式中转解决: import moxing
进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。
在左侧导航栏中,选择“模型部署”。 在“模型部署”页面,任选以下方式进入模型体验页面。 在“预置服务”页签,单击操作列“在线体验”,进入“模型体验”页面。 在“我的服务”页签,单击操作列“更多 > 在线体验”,进入“模型体验”页面。 在“模型体验”右上角,单击“参数设置”,拖动或直接输入数值配置推理参
接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{project_id}/workflows/{workflow_id}/exec
接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project_id}/workflows/{workflow_id}/schedules/{schedule_id}
数据。 训练代码 以下代码中以“### 分布式改造,... ###”注释的代码即为多节点分布式训练需要适配的代码改造点。 不对示例代码进行任何修改,适配数据路径后即可在ModelArts上完成多节点分布式训练。 注释掉分布式代码改造点,即可完成单节点单卡训练。完整代码见分布式训练完整代码示例。
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
准备工作 准备训练代码 模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码的开发规范可以参考开发用于预置框架训练的代码。 当使用自定义镜像创建训练作业时,训练代码的开发规范可以参考开发用于自定义镜像训练的代码。