检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pro,本书会尽可能保证使用的示例代码可以在读者的笔记本电脑上运行,但是有些情况下单靠笔记本电脑的CPU运算起来会比较费劲,运算时间也非常长。尤其是卷积神经网络(CNN),其包含了大量的矩阵运算,本质上非常适合通过GPU进行训练,而对CPU来说简直是一种灾难。 在深度学习的学习和实践中,可以选择配置一台G
老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。
我们已经看过常用估计的定义,并分析了它们的性质。但是这些估计是从哪里来的呢?并非猜测某些函数可能是好的估计,然后分析其偏差和方差,我们希望有些准则可以让我们从不同模型中得到特定函数作为好的估计。最常用的准则是最大似然估计。考虑一组含有 m 个样本的数据集 X = {x(1), . . .
是未知的定值,而点估计θˆ 是考虑数据集上函数(可以看作是随机的)的随机变量。贝叶斯统计的视角完全不同。贝叶斯用概率反映知识状态的确定性程度。数据集能够直接观测到,因此不是随机的。另一方面,真实参数 θ 是未知或不确定的,因此可以表示成随机变量。在观察到数据前,我们将 θ 的已知知识表示成先验概率分布
能会说“令∈N 表示元素的数目”向量,一个向量是一列数。这些数是有序排序的。通过次序中的索引,我们可以确定每个单独的数。通常我们赋予向量粗体的小写变量名称,比如x.向量中的元素可以通过带脚标的斜体表示。向量x的第一个元素是x1,第二个元素是x2,等等。我们也会注明储存在向量中的元
重点探讨的深度学习是具有多级表示的表征学习方法。在每一级(从原始数据开始),深度学习通过简单的函数将该级的表示变换为更高级的表示。因此,深度学习模型也可以看作是由许多简单函数复合而成的函数。当这些复合的函数足够多时,深度学习模型就可以表达非常复杂的变换。 深度学习可以逐级表示越来
战 魏凯峰 著PREFACE前 言为什么要写这本书深度学习领域开始受到越来越多的关注,各大深度学习框架也孕育而生,在这个阶段,我被深度学习深深吸引并逐渐开始学习相关知识。研究生毕业后,我继续从事算法相关的工作,具体而言是深度学习算法在图像领域的应用,也就是常说的计算机视觉算法。M
目。假设我们将模型表示为给定输入后,计算对应输出的流程图,则可以将这张流程图中的最长路径视为模型的深度。正如两个使用不同语言编写的等价程序将具有不同的长度;相同的函数可以被绘制为具有不同深度的流程图,其深度取决于我们可以用来作为一个步骤的函数。图1.3说明了语言的选择如何给相同的架构两个不同的衡量。图
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”
PC)系统,这些系统尤其擅长深度学习所需的计算类型。在过去,这种水平的硬件对于大多数组织来说成本费用太高。然而,基于云计算的机器学习服务的增长意味着组织可以在没有高昂的前期基础设施成本的情况下访问具有深度学习功能的系统。 •数据挑战:深度学习也会受到妨碍其他大数据项目的数据质量和
建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每个通道只有0或1,以
Dropout的另一个重要方面是噪声是乘性的。如果是固定规模的加性噪声,那么加了噪声 ϵ 的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,在训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化
marginal probability distribution)。例如,假设有离散型随机变量x 和y,并且我们知道P(x; y)。我们可以依据下面的求和法则(sum rule) 来计算P(x): ∀x ∈ x, P (x = x) =ΣyP(x = x; y =
Dropout(Dropout)(Srivastava et al., 2014) 提供了正则化一大类模型的方法,计算方便但功能强大。在第一种近似下,Dropout可以被认为是集成大量深层神经网络的实用Bagging方法。Bagging涉及训练多个模型,并在每个测试样本上评估多个模型。当每个模型都是一个很
年多伦多举行的一场人工智能会议上,深度学习“教父” Geoffrey Hinton 曾说过,“如果你是一名放射科医生,那么你的处境就像一只已身在悬崖边缘却毫不自知的郊狼。”他认为,深度学习非常适合读取核磁共振(MRIs)和 CT 扫描图像,因此我们应该“停止培训放射科医生”,而且在五年内,深度学习会有更大的进步。然而,时间快进到
到形状(或者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加
可能比概念本身的图更深。这是因为系统对较简单概念的理解在给出更复杂概念的信息后可以进一步精细化。例如,一个AI系统观察其中一只眼睛在阴影中的脸部图像时,它最初可能只看到一只眼睛。但当检测到脸部的存在后,系统可以推断第二只眼睛也可能是存在的。在这种情况下,概念的图仅包括两层(关于眼睛的
年,短短的六年时间里,深度学习所需的计算量增长了 300,000%。然而,与开发算法相关的能耗和碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻的问题。 针对这一问题,哥本哈根大学计算机科学系的两名学生,协同助理教授 一起开发了一个的软件程序,它可以计算和预测训练深度学习模型的能源消耗和二氧化碳排放量。 网址:
(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana
1]⊤, [1, 0]⊤, [1, 1]⊤} 上表现正确。我们会用全部这四个点来训练我们的网络,唯一的挑战是拟合训练集。 我们可以把这个问题当作是回归问题,并使用均方误差损失函数。我们选择这个损失函数是为了尽可能简化本例中用到的数学。在应用领域,对于二进制数据建模时,MSE通常并不是一个合适的损失函数。