内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • **Mac深度学习环境配置**

    Mac深度学习环境配置安装组合:Anaconda+PyTorch(GPU版)开源贡献:马曾欧,伦敦大学2.1 安装AnacondaAnaconda 的安装有两种方式,这里仅介绍一种最直观的- macOS graphical install。https://www.anaconda

    作者: @Wu
    592
    0
  • 矩阵和向量相乘“深度学习”笔记

    法可被定义,矩阵A的列数必须和矩阵B的行数相等。如果矩阵A的形状是m x n,矩阵B的形状是n x p,那么矩阵C的形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如 C=AB需要注意的是,两个矩阵的标准乘积不是指两个矩阵中对应元素的乘积。不过,那样的矩阵

    作者: QGS
    731
    2
  • 【转载】深度学习与人脑

    深度学习是机器学习的一个子集,它通过接收大量数据并试图从中学习来模拟人脑。在IBM对该术语的定义中,深度学习使系统能够“聚集数据,并以令人难以置信的准确性做出预测。” 然而,尽管深度学习令人难以置信,但IBM尖锐地指出,它无法触及人脑处理和学习信息的能力。深度学习和 DNN(深度

    作者: 乔天伊
    19
    3
  • 深度学习笔记之为什么要用概率

     计算机科学的许多分支处理的大部分都是完全确定的实体。程序员通常可以安全地假定 CPU 将完美地执行每个机器指令。硬件错误确实会发生,但它们足够罕见,以至于大部分软件应用并不需要被设计为考虑这些因素的影响。鉴于很多计算机科学家和软件工程师在一个相对干净和确定的环境中工作,机器学习对于概率论的大量使用不得不令人吃惊。 

    作者: 小强鼓掌
    647
    1
  • 深度学习之任务T

    机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。如果考虑“任务”比较正式的定义,那么学习的过程并不是任务。在相对正式的 “任务”定义中,学习过程本身并不是任务。

    作者: 小强鼓掌
    823
    3
  • 深度学习之超参数

    大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。所示的多项式回归实例中,有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 λ 是另一个

    作者: 小强鼓掌
    942
    2
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    423
    0
  • 深度学习介绍

    学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 1.1.1 区别   1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 深度学习》正则化笔记分享

    的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应 该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。需要注意的是,在正则化的时候,bais是不需要正则化的,不然可能会导致欠拟合!

    作者: 运气男孩
    1033
    3
  • AI、机器学习深度学习的关系

    作者: andyleung
    1560
    1
  • 深度学习时序图网络

    序图网络(TGNs),一个通用的,有效的框架,用于深度学习动态图表示为时间事件序列。由于内存模块和基于图的运算符的新组合,TGNs能够显著优于以前的方法,同时在计算效率上也更高。此外,我们还展示了之前几个用于学习动态图的模型可以转换为我们框架的具体实例。我们对框架的不同组件进行了

    作者: QGS
    763
    1
  • 深度学习之平滑先验

    距离拉大时而减小。局部核可以看作是执行模版匹配的相似函数,用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将

    作者: 小强鼓掌
    1195
    1
  • 深度学习的现实应用《深度学习与Mindspore实践》今天你读书了吗?

    要成果就是词向量的学习。  医疗领域深度学习算法可以发现人类无法捕捉到的特征。研究人员利用这些算法对细胞图像进行分类,建立基因组连接,加速药物发明周期。在医疗领域,深度卷积神经网络被应用于癌细胞分类、病变检测、器官分割和图像增强等医疗图像分析金融领域,深度学习被应用于金融欺诈检测

    作者: QGS
    1026
    2
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    953
    2
  • 深度学习之逻辑回归

    困难些。其最佳权重没有闭解。反之,我们必须最大化对数似然来搜索最优解。我们可以通过梯度下降最小化负对数似然达到这一点。通过确定正确的输入和输出变量上的有参条件概率分布族,相同的策略基本上可以用于任何监督学习问题。

    作者: 小强鼓掌
    732
    3
  • 深度学习之Dropout启发

    须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练 p(y | x, µ) 的集成。注意,这里不要求 µ 具有有限数量的值。例如, µ 可以是实值。Srivastava

    作者: 小强鼓掌
    831
    3
  • 深度学习训练过程

    上升的非监督学习就是从底层开始,一层一层地往顶层训练。采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,这也是和传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一

    作者: QGS
    539
    1
  • 深度学习之隐藏单元

    微的。例如,整流线性单元 g(z) = max{0, z} 在 z = 0 处不可微。这似乎使得 g 对于基于梯度的学习算法无效。在实践中,梯度下降对这些机器学习模型仍然表现得足够好。部分原因是神经网络训练算法通常不会达到代价函数的局部最小值,而是仅仅显著地减小它的值,如图 4.

    作者: 小强鼓掌
    639
    2
  • 深度学习笔记之概率论

    些算法来计算或者近似由概率论导出的表达式。其次,我们可以用概率和统计从理论上分析我们提出的AI系统的行为。      概率论是众多科学和工程学科的基本工具。我们提供这一章是为了保证那些背景是软件工程而较少接触概率论的读者也可以理解本书的内容。      概率论使我们能够作出不确定

    作者: 小强鼓掌
    836
    1
  • 深度学习之设计矩阵

    的大部分学习算法都是讲述它们是如何运行在设计矩阵数据集上的。当然,将一个数据集表示成设计矩阵,必须是可以将每一个样本表示成向量,并且这些向量的大小相同。这一点并非永远可能。例如,你有不同宽度和高度的照片的集合,那么不同的照片将会包含不同数量的像素。因此不是所有的照片都可以表示成相同长度的向量。第9

    作者: 小强鼓掌
    1663
    1