检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
这里谈到了独热编码one-hot,独热编码是用来表示标签数据的。前面已经知道了,标签数据很简单,就是表示0-9范围内的一个数字。 说实话独热编码有什么用处,真的还没有理解。还有什么欧式空间的概念啊,都很陌生。 看看代码吧。 ```python #独热编码示例。 x=[3,4] tf
引入这两个算法。神经网络的目的是建立输入层与输出层之间的关系,进而利用建立的关系得到预测值。通过增加隐藏层,神经网络可以找到输入层与输出层之间较复杂的关系。深度学习是拥有多个隐藏层的神经网络,在神经网络中,我们通过正向传播算法得到预测值,并通过反向传播算法得到参数梯度,然后利用梯
现在我们来尝试迭代多次,看看效果。 从w=0开始 ```python #w初始值给0 x,y=0.5,0.8 w=0;lr=0.5 #lr学习率=0.5 pred=x*w loss=((pred-y)**2)/2 grad=(pred-y)*x print('自变量:'+str(x))
com/data/forums/attachment/forum/20228/6/1659775404176492371.png) 从上图中可以看到,信用卡余额相对于每月收入来说,对还款违约的影响更大。 一般模型不会直接预测某信用卡用户是否违约,而是预测其违约的概率,表示为`P(Default|Balance
训练模型跑出来了后,要使用,但是我们没有数据了,因为数据都拿去训练了。 所以课程中,随机挑了一条训练数据来应用到模型里来使用。 这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分,
深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse
所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;
接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型和logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式: ![image
欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待
Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0
的梯度消失问题。tanh函数也有梯度消失问题。ReLU(Rectified Linear Unit)函数出现和流行的时间都比较晚,但却是深度学习常用的激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负的输入值都变换成0,所有非负的输入值,函数值都等于
Network)的扩展和应用为基础,这次浪潮的出现标志着深度学习时代的来临。这一阶段的研究主要集中在如何提高深度神经网络的性能和泛化能力上。SVM作为一种经典的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学
我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他
7/1658883526687508822.png) 矩阵的基本运算就是加减乘除。加减法如果这两个矩阵的维度是一样的,就非常好理解。矩阵也可以和行向量进行加减,要求行向量的列数和矩阵的列数是一样的。 矩阵的乘法,如果两个矩阵的维度一样,也非常好理解,这种叫做`逐点相乘`(element-wise
约,但被(错误)预测为不违约的人尽可能的少。(假阴) 如果银行希望扩大业务而适当放宽风险控制,那么银行可以让真实违约,但被(错误)预测为不违约的稍微多些。从上表可以看出该模型可以很好的控制假阳性率, 也就是说, 在真实不违约的人中,绝大部分都正确预测为不违约;只有2人错误预测为违约。
有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫
自定义函数。 然后介绍numpy库,他可以实现快速的算数运算,特别是矩阵运算,运算内部是通过C语言实现的,所以比较快。他包含两种基本数据类型:`数组(array)`和`矩阵(matrix)`。 然后介绍基于numpy库的pandas库,可以用于数据分析,数据清理和数据准备。他的数
解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为简单的任务