检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方法二:产品介绍可以来源于真实的产品信息,也可以通过in-context-learning方式生成。示例如下: 大模型输入: 你是一个广告策划,你的工作是为不同的产品写宣传文案。 以下是一些优秀的宣传文案样例,请参考这些样例,为产品:“%s”编写一段宣传文案。 宣传文案样例1: XXXXX
什么是AI助手 AI助手是一种基于NLP大模型构建的人工智能应用,它通过结合多种工具并利用大模型的对话问答、规划推理、逻辑判断等能力,来理解和回应用户的需求。 例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
盘古大模型是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。平台支持大模型的定制开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 公测 产品介绍 2 盘古大模型「应用百宝箱」上线 应用百宝箱是盘古大
练轮数,反之可以使用较小的训练轮数。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速
若干个变量,通过占位符{{ }}标识,单击“确认”按钮,平台会自动识别插入的变量。 图2 撰写提示词 图3 确认提示词内容 识别的变量展示在变量定义区域,可以编辑变量名称便于理解。 图4 查看提示词变量 变量定义区域展示的是整个工程任务下定义的变量信息,候选提示词中关联的变量也会
启用模型内容审核 内容审核是文本的检测技术,可自动检测涉黄、涉暴、违规等内容,对用户向模型输入的内容、模型输出内容进行内容审核,帮助客户降低业务违规风险。 授权使用华为云内容审核,有效拦截大模型输入输出的有害信息,保障模型调用安全。 授权后,在调用盘古大模型能力时,模型的输入和输
创建一个训练数据集 训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训
云服务安全保障体系。 安全性是华为云与您的共同责任,如图1所示。 华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华
llm_module_config.system_prompt = "你是华为开发的AI助手" # 盘古LLM pangu_llm = LLMs.of("pangu", llm_config) answer = pangu_llm.ask("你是谁") 父主题: Python SDK
判断以上问题是否需要调用检索,请回答“是”或”否“"], "target": "否"} {"context ": ["福田区支持哪些组织开展退役军人教育培训工作? 判断以上问题是否需要调用检索,请回答“是”或“否”"], "target ": "是"} 问答模块:准备单轮问答和检索增强的数据集。
当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,可以在盘古大模型套件平台“服务管理”功能中获取。 图3 服务管理 图4 获取deployment_id
LLMs.of(LLMs.PANGU); 基础问答:基础的模型文本问答,temperature等参数采用模型默认的设置。 llm.ask("你是谁?").getAnswer(); 同时调用多个不同的LLM。 final LLMConfig config = LLMConfig.builder()
"请问科技行业的公司,他们的平均利润和市值是多少?" …… 微调数据要求: 数据格式样例:JSONL格式,每行是一条JSON,包含“context”和“target”两个字段。示例如下: {"context": "今天是2023-11-20,你是一个银行智能助理,现在需要根据用户问题、指标-解释表、参数-类型-解释表
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
数据量很少,可以微调吗 不同规格的模型对微调的数据量都有相应要求。 如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分
数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx A:你可以讲个笑话吗? B:当然可以啦,以下是xxxx A:可以把这个笑话改成xxxx B:好的,以下是修改后的xxxx 拼接后的微调数据格式示例:
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集