检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、
撰写提示词 创建提示词工程 撰写提示词 预览提示词效果 父主题: 开发盘古大模型提示词工程
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
创建与管理插件 插件介绍 创建插件 管理插件 父主题: 开发盘古大模型Agent应用
板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。 父主题: 开发盘古大模型提示词工程
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 使用盘古NLP大模型创建Python编码应用的流程见表1。 表1 用盘古NLP大模型创建Python编码应用 操作步骤
力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压
管理插件 Agent开发平台支持对插件执行获取插件ID、删除、导入、导出操作。 获取插件ID、删除插件 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台 > 插件”页面。
Gallery中订阅数据资产的功能。AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为企业级或个人开发者等群体,提供安全、开放的共享及交易环节。 发布数据资产至AI Gallery 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
参数的默认值,如果插件服务的入参生成缺失,默认值会在大模型解析时被使用。 响应参数 参数名称 响应参数的名称,长度为1 ~ 50个字符,参数名称会作为大模型解析大模型输出结果的依据。 参数描述 响应参数的名称,长度为1 ~ 200个字符,参数描述会作为大模型解析大模型输出结果的依据。 参数类型 该参数值的数据类型,当前支持三种类型。
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
管理应用 Agent开发平台支持对应用执行获取应用ID、删除、导入、导出操作。 获取应用ID、删除应用 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 进入“工作台 > 应用”页面。
户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要
如何让大模型按指定风格或格式回复 要让模型按照特定风格回复,可以提供领域和角色信息(如目标受众或特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 开发盘古大模型提示词工程
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”