检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要
选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图2 创建提示词评估任务 单击“确定”,评估任务自动进入执行状态。
类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到
工作流介绍 Agent开发平台的工作流由多个节点构成,节点是组成工作流的基本单元。平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实
查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
上传数据至OBS:将本地数据上传至OBS服务,请详见通过控制台快速使用OBS。 使用数据导入功能:通过平台提供的“数据导入”功能,将数据从OBS导入到平台。 父主题: 大模型使用类问题
编排与调用应用 应用介绍 编排应用 调用应用 管理应用 父主题: 开发盘古大模型Agent应用
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是
图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
横向比较提示词效果 将设置为候选的提示词横向比对,获取提示词的差异性和效果。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。
附录 状态码 错误码 获取项目ID 获取模型部署ID
调用应用 应用调试成功后,可以使用API调用该应用。 获取调用路径 应用的调用路径获取步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 在“工作台 > 应用”页面,单击所需应用的“
数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts Studio平台训练、评测不同模型时,存在不同数据量的限制。以NLP大模型为例,请参考《用户指南》“开发盘古NLP大模型 > 使用数据工程构建NLP大模型数据集”。 模型开发-模型最小训练单元 不同模型的最小训练
开始节点配置图 步骤3:配置大模型节点 大模型节点提供了使用大模型能力,可在节点中配置已部署的模型,用户可以通过编写Prompt、设置参数让模型处理相应任务。 大模型节点为可选节点,若无需配置,可跳过该步骤。 大模型节点配置步骤如下: 拖动左侧“大模型”节点至画布中,单击该节点以打开节点配置页面。
API NLP大模型 科学计算大模型 Agent Token计算器
通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型构建的优点是数据丰富度更高,缺点是成本较高。