检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理预测大模型训练任务 在训练任务列表中,任务创建者可以对任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,可进行如下操作:
创建NLP大模型评测数据集 NLP大模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程
如何调整推理参数,使盘古大模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
预测大模型选择建议 选择合适的预测大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。 表1 预测大模型的类型 模型名称 适用场景 说明 Pangu-Predict-Table-Cla-2.0.0 该模型属于分类模
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型清单,
查看CV大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
会道德的有害信息。 模型安全:通过模型动态混淆技术,使模型在运行过程中保持混淆状态,有效防止结构信息和权重信息在被窃取后暴露。 系统安全:通过网络隔离、身份认证和鉴权、Web安全等技术保护大模型系统安全,增强自身防护能力,以抵御外部安全攻击。 父主题: 大模型概念类问题
时表现得更好,而另一些模型则可能在更广泛的任务上更为出色。 根据盘古大模型特点调整提示词。 直接使用在其他大模型上有效的提示词,可能无法在盘古大模型上获得相同的效果。为了充分发挥盘古大模型的潜力,建议根据盘古大模型的特点,单独调整提示词。直接使用在其他大模型上有效的提示词,可能无
订购盘古大模型服务 订购模型与资源 ModelArts Studio大模型开发平台支持订购模型资产、数据资源、训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、CV大模型、预测
可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参数规模很大,可以使用较小的批量大小,反之可以使用较大的批量大小。 如果您没有专
开发盘古NLP大模型 训练NLP大模型 进行模型的训练,如预训练、微调训练方式。 训练NLP大模型 压缩NLP大模型 通过模型压缩可以降低推理显存占用,节省推理资源提高推理性能。 压缩NLP大模型 部署NLP大模型 将模型部署用于后续模型的调用操作。 部署NLP大模型 评测NLP大模型
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“科学计算大模型”。 场景 选择“区域中期海洋智能预测”。 训练类型 选择“微调”。 基础模型 选择所需微调的基础模型,可从“已发布模型”或“未发布模型”中进行选择。 模型水平分辨率 模型网格在水平方向上的精细程度,通常用来表示模拟
选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,然后利用大模型(如盘古提供的任意规格的基础功能模型)采
管理盘古大模型空间资产 盘古大模型空间资产介绍 管理盘古数据资产 管理盘古模型资产
00:?abc”。 可选择的要素参考表8中,提供的全球海洋要素模型的深海变量和海表变量。 表8 中期海洋智能预测模型信息 模型 深海层深 预报深海变量 预报海表变量 时间分辨率 水平分辨率 区域范围 全球海洋要素模型 0m, 6m, 10m, 20m, 30m, 50m, 70m
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
CV大模型训练常见报错与解决方案 CV大模型训练常见报错及解决方案请详见表1。 表1 CV大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空。 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型