检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表示GPU温度。 摄氏度(℃) 自然数 NA NA NA GPU功率 DCGM_FI_DEV_POWER_USAGE 表示GPU功率。 瓦特(W) >0 NA NA NA GPU显存温度 DCGM_FI_DEV_MEMORY_TEMP 表示显存温度。 摄氏度(℃) 自然数 NA NA
on-vocab8404-pytorch/example/asr_example.wav的识别结果如下: 图2 测试音频识别结果 步骤九:在Aishell1测试集上测试 python infer.py --model_path 模型文件所在的绝对路径 --input_file aishell
按需计费规格,使用完之后请及时停止Workflow,避免产生不必要的费用。 测试推理服务:工作流运行完成后,在服务部署节点右侧单击“实例详情”跳转至推理服务详情页。或者在ModelArts管理控制台,选择“部署上线>在线服务”,找到部署的推理服务,单击服务名称,进入服务详情页。单击“预测”,右边可查看预测结果。
配置信息。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 选填参数,指定模型的启动命令,您可以自定义该命令。 如果使用预
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
Standard,并进行在线推理预测的体验过程。 面向AI开发零基础的用户 从0-1制作自定义镜像并创建AI应用 针对ModelArts不支持的AI引擎,您可以构建自定义镜像,并将镜像导入ModelArts,创建为模型。本案例详细介绍如何使用自定义镜像创建模型,并部署成在线服务。 面向熟悉
举例。仅做测试验证,可以不需要通过创建deployment或者volcano job的方式,直接启动容器进行测试。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。
理 统一管理 AI 开发全流程,提升开发效率,记录模型构建实验全流程 多场景部署,灵活满足业务需求 支持云端/边端部署等多种生产环境 支持在线推理、批量推理、边缘推理多形态部署 AI工程化能力,支持AI全流程生命周期管理 支持MLOps能力,提供数据诊断、模型监测等分析能力,训练智能日志分析与诊断
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查: 健康检查端口是否可以正常工作 自定义镜像中配置了健康检查,需要在测试镜像时,同步测试健康检查接口是否可以正常工作,具体参考从0-1制作自定义镜像并创建AI应用中的本地验证镜像方法。 创建模型界面上配置的健康检查地址与实际配置的是否一致
用场景、使用方法等信息。 编辑完成后,单击“确认”保存修改。 管理镜像文件 预览文件 在镜像详情页,选择“镜像文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在镜像详情页,选择“镜像文件”页签。单击操作列的“下
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:部署在线服务报错starting container process caused "exec: \"/home/mind/model/run_vllm
False Bool ignore_eos表示是否忽略EOS并且继续生成token。 Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的AI应用在线模型体验,可以实现模型服务的即时可用性,开发者无需经历繁琐的环境配置步骤,即可直观感受模型效果,快速尝鲜大模型,真正达到“即时接入,即时体验”的效果。