检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
与云监控的关系 ModelArts使用云监控服务(Cloud Eye Service, 简称CES)监控在线服务和对应模型负载,执行自动实时监控、告警和通知操作。CES的更多信息请参见《云监控服务用户指南》。 与云审计的关系 ModelArts使用云审计服务(Cloud Trace
与云监控的关系 ModelArts使用云监控服务(Cloud Eye Service, 简称CES)监控在线服务和对应模型负载,执行自动实时监控、告警和通知操作。CES的更多信息请参见《云监控服务用户指南》。 与云审计的关系 ModelArts使用云审计服务(Cloud Trace
opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
}/ComfyUI python main.py --port ${port} --force-fp16 --listen ${container_ip_address} 参数说明: port:为启动镜像时映射port container_ip_address:为容器IP,如上图的172
元模型来源:注意此处选择“从容器镜像选择”。 容器镜像所在路径:单击文件夹标签,选择已经制作好的镜像。 容器调用接口参数:根据镜像实际提供的协议和端口填写,本案例中的SDXL镜像提供HTTP服务和8183端口。 图4 填写参数(1) 系统运行架构: 选择ARM. 推理加速卡:无。 部署类型: 在线服务。 请求模式:同步请求。
2)不同模型推理支持的max-model-len长度说明。 --hostname:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口。 服务启动后,会打印如下信息。 server launch time cost: 15.443044185638428 s INFO:
host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_out_len建议设置
}/ComfyUI python main.py --port ${port} --force-fp16 --listen ${container_ip_address} 参数说明: port:为启动镜像时映射port container_ip_address:为容器IP,如上图的172
allow whitelist # Block the rest http_access deny all # Default port http_port 3128 设置主机目录和配置文件权限如下。 chmod 640 -R /etc/squid 执行如下命令启动Squid实例。
打开VSCode的Remote-SSH配置文件,添加SSH配置项,注意替换服务器IP以及容器的端口号: Host Snt9b-dev HostName 服务器IP User root port 容器SSH端口号 identityFile ~\.ssh\id_rsa
python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs 5 \ --parallel-num 1 4
python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs 5 --num-scheduler-steps
置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --tru
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5