检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
获取智能任务的信息 功能介绍 获取智能任务的详细信息,支持查询“智能标注”和“自动分组”两大类智能任务。可通过指定路径参数“task_id”来查询某个具体任务的详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例
更新服务配置 功能介绍 更新模型服务配置。也可以使用此接口启停服务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v1/{project_id}/services
创建资源池 功能介绍 用户创建资源池。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/pools 表1 路径参数 参数 是否必选
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方式一
创建Notebook实例 功能介绍 创建Notebook实例,可以根据您指定的实例规格,不同AI引擎镜像,存储等相关参数,为您创建一个Notebook,您可以通过网页和SSH客户端访问Notebook实例。 该接口为异步操作,创建Notebook实例的状态请通过查询Notebook
使用AI Gallery SDK构建自定义模型 AI Gallery的Transformers库支持部分开源的模型结构框架,并对昇腾系列显卡进行了训练/推理性能优化,可以做到开箱即用。如果你有自己从头进行预训练的模型,AI Gallery也支持使用SDK构建自定义模型接入AI Gallery
推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu
LLaVA-NeXT基于DevServer适配Pytorch NPU训练微调指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展LLaVA-NeXT模型的训练过程,包括pretrain_clip
SDXL Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.902) 本文档主要介绍如何在ModelArts Lite的DevServer环境中部署Stable Diffusion的Diffusers框架,使用NPU卡进行推理。 方案概览 本方案介绍了在
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 操作步骤 登录ModelArts
创建生产训练作业 模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts Standard
批量更新样本标签 功能介绍 批量更新样本标签,包括添加、修改和删除样本标签。当请求体中单个样本的“labels”参数传空列表时,表示删除该样本的标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用
批量更新团队标注样本的标签 功能介绍 批量更新团队标注样本的标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project_id}/datasets
更新团队标注验收任务状态 功能介绍 在团队标注任务完成验收前确认验收范围以及是否覆盖已标注的数据,以此更新样本状态。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT
查询单个样本信息 功能介绍 查询单个样本信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets/{dataset_id
查询数据集的团队标注任务列表 功能介绍 查询数据集的团队标注任务列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets
查询单个智能标注样本的信息 功能介绍 查询单个智能标注样本的信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux