检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
duleNotFoundError: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0
字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 资产集市介绍 AI Gallery中,“资产集市”支持Notebook代码样例
String 资源标识。 quota 是 Integer 要修改的配额值。配额值为正整数或-1,-1代表不限制配额。配额值范围不能超过配额的最大值与最小值。可通过调用查询工作空间配额接口查询配额的最大值。 响应参数 状态码:200 表5 响应Body参数 参数 参数类型 描述 quotas
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取账号名和ID和获取用户名和用户ID。 已准备好PyTorch框架的训练代码,例如将启动文件“test-pytorch
可选择“ModelArts”、“对象存储服务(OBS)”、“本地上传”。 ModelArts区域 选择当前控制台所在的区域。 OBS区域 选择与当前控制台一致的区域。 存储位置 用来存储发布的资产。 数据类型 当前数据集的数据类型。 选择数据集 选择需要发布的数据集。 许可证类型 根
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
当数据集使用完成或不再使用时,调用删除数据集接口删除数据集。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已经准备好数据源,例如存放在OBS的“/test-obs/classify
None 服务介绍 ModelArts产品 产品介绍 03:19 了解什么是ModelArts ModelArts自动学习 视频介绍 02:59 ModelArts自动学习简介 ModelArts CodeLab 视频介绍 04:16 ModelArts CodeLab介绍 JupyterLab
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
执行如下操作,将数据上传到OBS中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹
duleNotFoundError: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0
执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
调用批量更新样本标签根据获取的智能标注样本列表确认智能标注结果。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已准备好用于智能标注的图像分类的数据集,并获取数据集ID,例如“6mHUG
romHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretr
romHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretr
romHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretr