检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据、SQL语法(Hive SQL)、ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Imp
SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Imp
Tez是Apache最新的支持DAG(有向无环图)作业的开源计算框架,它可以将多个有依赖的作业转换为一个作业从而大幅提升DAG作业的性能。 MRS将Tez作为Hive的默认执行引擎,执行效率远远超过原先的MapReduce的计算引擎。 有关Tez的详细说明,请参见:https://tez
将高频访问的SQL查询和有高耗时的算子(连接, 聚合等算子)的SQL通过建立物化视图进行预计算,然后在查询的SQL中将能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。
选择“叶子租户”:当前租户为叶子租户,不支持添加子租户。 选择“非叶子租户”:当前租户为非叶子租户,支持添加子租户,但租户层级不能超过5层。 计算资源 为当前租户选择动态计算资源。 选择“Yarn”时,系统自动在Yarn中以子租户名称创建任务队列。 如果是叶子租户,叶子租户可直接提交到任务队列中。
condition 系统当前指标取值满足自定义的告警设置条件。 对系统的影响 OBS write接口调用失败数高于阈值,会影响上层大数据计算业务的正常执行,导致某些计算任务的执行失败。 可能原因 OBS服务端出现执行异常或严重超时。 处理步骤 登录FusionInsight Manager,选择“运维
Flink应用开发简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。 Flink整个系统包含三个部分:
b=xxx 原因分析 按照设定,任务应该只扫描b=xxx的分区,但是查看任务日志可以发现,实际上任务却扫描了所有的分区再来计算b=xxx的数据,因此任务计算的很慢。并且因为需要扫描所有文件,会有大量的OBS请求发送。 MRS默认开启基于分区统计信息的执行计划优化,相当于自动执行Analyze
condition 系统当前指标取值满足自定义的告警设置条件。 对系统的影响 OBS read接口调用失败数高于阈值,会影响上层大数据计算业务的正常执行,导致某些计算任务的执行失败。 可能原因 OBS服务端出现执行异常或严重超时。 处理步骤 登录FusionInsight Manager,选择“运维
取决于主Server的单点能力,可扩展性不够。 采用多主实例模式的HA方案,不仅可以规避主备切换服务中断的问题,实现服务不中断或少中断,还可以通过横向扩展集群来提高并发能力。 实现方案 多主实例模式的HA方案原理如下图所示。 图1 Spark JDBCServer HA JDBC
AZ的健康状态由AZ内的存储资源(HDFS)、计算资源(Yarn)和关键角色的健康度是否超过配置阈值决定。 AZ亚健康有两种: 计算资源(Yarn)不健康,存储资源(HDFS)健康,任务无法提交到本AZ,但是数据可以继续往本AZ内读写。 计算资源(Yarn)健康,存储资源(HDFS)
从零开始使用Kudu Kudu是专为Apache Hadoop平台开发的列式存储管理器。Kudu具有Hadoop生态系统应用程序的共同技术特性:可水平扩展,并支持高可用性操作。 前提条件 已安装集群客户端,例如安装目录为“/opt/hadoopclient”,以下操作的客户端目录只是举例,请根据实际安装目录修改。
该能力可以极大降低用户使用物化视图功能的使用难度,带来业务无感知的分析加速效果。HetuEngine管理员通过付出少量的计算资源和存储空间,可实现对高频SQL业务的智能加速。同时,该能力可以降低数据平台的整体负载(CPU、内存、IO等),有助于提升系统稳定性。 智能物化视图包括以下几个功能: 自动推荐物化视图
Hudi开发规范概述 范围 本规范主要描述基于MRS-Hudi组件进行湖仓一体、流批一体方案的设计与开发方面的规则。其主要包括以下方面的规范: 数据表设计 资源配置 性能调优 常见故障处理 常用参数配置 术语约定 本规范采用以下的术语描述: 规则:编程时强制必须遵守的原则。 建议:编程时必须加以考虑的原则。
创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。
量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景: 实时数仓场景 使用流式计算引擎(如Flink)把实时数据写入ClickHouse,借助Cli
condition 系统当前指标取值满足自定义的告警设置条件。 对系统的影响 OBS数据读操作接口调用成功率小于阈值,会影响上层大数据计算业务的正常执行,导致某些计算任务的执行失败。 可能原因 OBS服务端出现执行异常或严重超时。 处理步骤 检查堆内存使用率。 在FusionInsight
HAVING HAVING HAVING与聚合函数和GROUP BY一起使用,来控制选在哪些组。HAVING能够在分组和聚合计算之后,过滤掉不满足给定条件的组。 例如: SELECT count(*), mktsegment, nationkey, CAST(sum(acctbal)
Kudu应用开发简介 Kudu简介 Kudu是专为Apache Hadoop平台开发的列式存储管理器,具有Hadoop生态系统应用程序的共同技术特性:在通用的商用硬件上运行,可水平扩展,提供高可用性。 Kudu的设计具有以下优点: 能够快速处理OLAP工作负载。 支持与MapRe
CarbonData CarbonData是一种新型的Apache Hadoop本地文件格式,使用先进的列式存储、索引、压缩和编码技术,以提高计算效率,有助于加速超过PB数量级的数据查询,可用于更快的交互查询。同时,CarbonData也是一种将数据源与Spark集成的高性能分析引擎。