检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
样和最大口令限制等。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。提示词的撰写步骤如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务操作栏中的“撰写”。
xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级
输出指示:指定输出的类型或格式。 提示词所需的格式取决于您想要语言模型完成的任务类型,以上要素并非都是必须的。 提示词工程使用流程 盘古大模型套件平台可以辅助用户进行提示词设计、调优、比较和对提示词通用性进行自动评估等功能,并对调优得到的提示词进行保存和管理。 表1 功能说明 功能 说明
更高质量的数据,可以通过CoT(思维链)、self-instruct等方式批量调用大模型,来获取满足您要求的数据。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。 父主题: 典型训练问题和优化策略
数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式 图1 数据参考格式 图2 数据示例 创建提示词评估数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 提示用例管理”。 图3 提示用例管理 单击页面右上角“创建提示用例集”,进入创建弹窗。 单击存储位置
API NLP大模型 Token计算器
表明模型性能越好。 指标看板介绍 指标看板使用BLEU指标评价模型,其核心思想是计算准确率。例如,给定一个标准译文(reference)和一个算法生成的句子(candidate),BLEU-1的计算公式为候选句中出现于标准译文中的单词数(m)与候选句总单词数(n)的比值,即m/n
令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个Token:“over”和“weight”。在中文中,
Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。
场景的数据,以此提升数据质量。一个比较常见的方法是,将微调数据以及数据评估标准输入给模型,让模型来评估数据的优劣。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来清洗数据。 父主题: 典型训练问题和优化策略
可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据
可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题: 进阶技巧
具体情况进行权衡,需要通过多次训练进行调整,既要考虑模型的通用能力,也要考虑模型在特定领域的性能。 创建一个训练数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。 图1 数据管理 在创建数据集弹出框中选择“创建一个训练数据集”,单击“创建”。
api.embeddings.factory import Embeddings # redis向量 # 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0
模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是
import org.junit.jupiter.api.Assertions; //redis向量 // 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 // 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0
表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge.4镜像 EulerOS 2.9 64bit with ARM for Tenant 20230728
使用前必读 概述 调用说明 终端节点 基本概念
NLP大模型 文本补全 多轮对话 父主题: API