检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署推理服务 本章节介绍如何使用vLLM 0.6.3框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.5。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。
出现此问题现象,通常是因为您部署的模型过大导致的。解决方法如下: 精简模型,重新导入模型和部署上线。 购买专属资源池,在部署上线为在线服务时,使用专属资源池进行部署。 父主题: 服务部署
服务部署、启动、升级和修改时,镜像不断重启如何处理? 问题现象 服务部署、启动、升级和修改时,镜像不断重启。 原因分析 容器镜像代码错误 解决方法 根据容器日志进行排查,修复代码,重新创建模型,部署服务。 父主题: 服务部署
部署推理服务 自动化脚本快速部署推理服务(推荐) 手动部署推理服务 父主题: DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
文本或文件进行服务测试。 如果您的元模型是自定义的,即推理代码和配置文件是自行编写的(配置文件编写说明),“调用指南”只是将您编写的配置文件进行了可视化展示。调用指南的输入参数与配置文件对应关系如下所示。 图2 配置文件与调用指南的对应关系 不同输入请求的预测方式如下: JSON文本预测
服务部署、启动、升级和修改时,拉取镜像失败如何处理? 问题现象 服务部署、启动、升级和修改时,拉取镜像失败。 原因分析 节点磁盘不足,镜像大小过大。 解决方法 首先考虑优化镜像,减小节点磁盘的占用。 优化镜像无法解决问题,请联系系统管理员处理。 父主题: 服务部署
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
部署上线失败 出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的
--install-for-all 安装完成后再使用如下命令查看是否安装正确。 npu-smi info -t board -i 1 | egrep -i "software|firmware" 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
具体原因。 镜像健康检查配置问题,需修复代码后重新制作镜像创建模型后部署服务。了解镜像健康接口配置请参考模型配置文件编写说明中health参数说明。 模型健康检查配置问题,需重新创建模型或者创建模型新版本,配置正确的健康检查,使用新的模型或版本重新部署服务。了解模型健康检查请参考
务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下,尝试选用更小的容器规格或自定义规格,进行服务部署; 如果当前
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
本列表的状态显示为“就绪”时表示模型可以使用。 步骤三:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 图2 部署模型 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.6。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key