检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词
SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。 文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev
大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,并将这些信息整合到大模型生成的答案中,从而提供既准确又及时的答案。
提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以便简
对于微调而言,数据质量非常重要。一份数据量少但质量高的数据,对于模型效果的提升要远大于一份数据量多但质量低的数据。若微调数据的质量较差,那么可能会导致模型学习到一些错误或者不完整的信息,从而影响模型的准确性和可靠性。因此,不建议您直接使用低质量数据进行微调。 一份高质量的数据应具备以下几类特征: 数据
有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回答的能力。因此,如
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为了帮助用户更好地管理和优化
如果您需要对华为云上购买的盘古资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)并结合盘古大模型套件平台提供的“角色管理”功能实现精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权
添加Agent流式输出(Java SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
AgentAction包含Agent的工具选择、工具执行结果、思考等信息,AgentSessionStatus为一个枚举,包含Agnet的执行状态。建议直接对Agent的run接口的返回进行修改,以控制Agent的行为。如果想控制中间过程,可以对Agent的runStep的返回进行修改。 通过监听终止Agent的执行
一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训练会混合不同类型的数据。例如,为
使用API调用模型 用户可以通过API调用盘古大模型服务提供的基模型以及用户训练后的模型。训练后的模型需使用“在线部署”,才可以使用本章节提供的方法进行调用。本章节分别介绍使用Postman调用API和多语言(Java/Python/Go)调用API的方法,仅供测试使用。 前提条件 使用API调用模型前,需要先开通盘古大模型服务。
Loss)是一种衡量模型预测结果和真实结果差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。以下给出了几种正常的Loss曲线形式: 图2 正常的Loss曲线:平滑下降 图3 正常的Loss曲线:阶梯下降 如果
提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个e
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目