检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用TICS服务的实时隐匿查询功能,既能满足实时业务高效低延迟的业务需求,又能避免
下载计算节点配置信息 下载计算节点配置相关的信息,下载的信息可在部署计算节点的时候导入。“计算节点配置”代表“部署计算节点”属于哪个空间,用户输入的数据就会在哪个空间中参与计算。 配置信息包含证书,用于计算节点之间通信双向认证。证书保证了空间下的用户,部署的计算节点能够数据交互,参与计算。同时,也隔离了不同空间之间的数据访问。
为什么空间详情中“作业执行统计”实例数与空间作业中实例数统计不一致? 空间作业中的实例数统计的是实例总个数,而空间详情中“作业执行统计”实例数统计全部实例的总执行次数,可能存在一个实例执行多轮的情况。所以两个实例数统计不一致也是很正常的。
允许删除工作空间的权限,控制他们对TICS资源的使用范围。 如果华为账号已经能满足您的要求,不需要创建独立的IAM用户进行权限管理,您可以跳过本章节,不影响您使用TICS服务的其它功能。 IAM是华为云提供权限管理的基础服务,无需付费即可使用,您只需要为您账号中的资源进行付费。关
多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum(
根据统计结果,双方可能会发现存在以下两个问题: 碰撞后的数据总数比较小。 碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题:
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS多方安全计算进行联合样本分布统计
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4
场景描述 有效的风险控制能够消灭或减少风险事件发生的各种可能性,或减少风险事件发生时造成的损失,对于企业具有重要意义。现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问题。随
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
至此,企业A完成了整个TICS联邦建模的流程,并将模型应用到了营销业务当中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题:
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
管理任务 任务管理是可信智能计算服务提供的一项查看计算节点参与任务的功能。通过任务管理,用户可以查看到曾在该计算节点上执行过的所有作业,并查看自己这个计算节点在作业中的位置以及数据流向。 通过任务管理,用户可以查看自己的计算节点在空间中的作业参与度,并通过“计算过程”来确认数据是否合理、安全地被使用。
数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。 父主题:
创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测