已找到以下 206 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
会话过期
当前登录超时,请重新登录
  • 删除自定义场景 - 推荐系统 RES

    删除自定义场景 针对不再使用的自定义场景,您可以删除已释放资源。 前提条件 已存在创建成功的自定义场景。 删除自定义场景 登录RES管理控制台,在左侧导航栏中选择“推荐业务 > 自定义场景”,进入自定义场景列表页面。 选择自定义场景列表中的目标场景,单击“操作”列的“删除”。 在“

  • 创建离线数据源 - 推荐系统 RES

    创建离线数据源 在使用RES之前,首先您需要创建一个数据源,后续的操作,如修改数据源、创建自定义推荐,都是基于您创建的数据源进行的。 前提条件 已创建用于存储数据的OBS桶及文件夹,并且数据存储的OBS桶与RES在同一区域。 需要使用的数据已上传至OBS。 创建数据源 登录RES管理控制台

  • 导入近线数据源 - 推荐系统 RES

    导入近线数据源 通过导入近线数据源,达到实时计算并更新用户画像、物品画像,实时更新增量数据的目的。 前提条件 按数据规范准备数据并上传至通道。具体上传方法请参见上传实时数据。 导入近线数据源 登录RES管理控制台,在左侧菜单栏中选择“数据源”,进入“数据源”列表页面。 在数据源列表单击目标数据源名称

  • 数据导入 - 推荐系统 RES

    数据导入 数据导入介绍 数据导入即读取经过“数据结构”生成的数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要的宽表和画像数据。 宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据

  • 数据探索 - 推荐系统 RES

    数据探索 数据探索介绍 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据

  • 修改自定义场景 - 推荐系统 RES

    修改自定义场景 对于已创建的自定义场景,您可以修改相关参数配置以匹配业务变化。 前提条件 已存在创建完成的自定义场景。 修改基本信息 登录RES管理控制台,在左侧菜单栏中选择“推荐业务 > 自定义场景”,进入“自定义场景”列表页面。 在自定义场景列表中,单击目标场景名称进入“自定义场景详情

  • 数据源管理简介 - 推荐系统 RES

    数据源管理简介 RES以数据为基础进行算法计算并完成推荐,您可以在RES管理控制台,数据源页面完成数据创建、数据修改等操作,为智能场景推荐和自定义场景推荐做好数据准备。 数据类型 当前RES支持创建数据源和导入近线数据。创建数据源的数据格式和近线数据导入的格式要求一致,包括用户数据

  • 创建自定义场景 - 推荐系统 RES

    创建自定义场景 自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的

  • 数据结构 - 推荐系统 RES

    数据结构 当数据源创建完成,您可以进入数据源详情页面进行数据质量管理操作。数据质量管理操作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式

  • 上传离线数据源至OBS - 推荐系统 RES

    上传离线数据源至OBS RES使用对象存储服务(Object Storage Service,简称OBS)进行数据源的存储。因此,在使用RES之前您需要开通OBS服务并创建桶,然后在OBS桶中上传用户数据用于推荐作业的计算。 需要存放在OBS桶中的数据包括: 离线数据源:包含用户类数据

  • 修改或删除数据源 - 推荐系统 RES

    修改或删除数据源 您可以对离线数据源进行重新编辑操作来更新数据源,如果该数据源不再使用,您可以删除数据源释放资源。 修改离线数据源 前提条件 已存在的离线数据源有修改或者更新并已经上传至OBS。 只有在数据源数据结构特征抽取人工复核确认之前才允许修改数据源。 注意事项 修改编辑之后的离线数据源需要重新进行数据结构抽取和检测

  • 发布或终止自定义场景 - 推荐系统 RES

    发布或终止自定义场景 针对创建成功的自定义场景,需要进行发布才可以运行作业获取推荐结果。通过执行终止操作,停止运行当前场景。目前支持在自定义场景列表页面和自定义场景详情页面进行操作。 发布或终止自定义场景默认对该场景下的所有作业执行发布或终止操作,包括召回策略、过滤规则、排序策略和在线服务等作业

  • 召回策略 - 推荐系统 RES

    召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英文

  • 效果评估 - 推荐系统 RES

    效果评估 创建效果评估可以对线上服务设置指标,查看推荐效果的反馈,可以根据系统提供的指标添加。 表1 效果评估参数说明 参数名称 说明 名称 自定义名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于该效果评估作业的描述信息

  • 查询作业列表 - 推荐系统 RES

    job-name 否 String 作业名称 job-status 否 String 作业状态 sortby 否 String 排序字段 order 否 String 排序方式:asc,desc workspace_id 否 String 工作空间ID,默认为0 请求消息 暂不涉及

  • 排序策略-离线排序模型 - 推荐系统 RES

    排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个

  • 查询服务列表 - 推荐系统 RES

    workspace_id 否 String 工作空间ID,默认为0。 响应消息 响应参数请参见表2。 表2 响应参数说明 参数名称 是否必选 参数类型 说明 is_success 是 Boolean 是否成功。 services 是 List 返回服务列表信息,请参见表3。

  • 提交排序任务API - 推荐系统 RES

    表2 请求参数说明 参数名称 是否必选 参数类型 说明 workspace_id 否 String 工作空间ID,默认为0。 job_name 是 String 训练作业名称,名称只包含数字、字母、下划线和中划线,长度为1-20位。如:rank-demo。

  • 计费说明 - 推荐系统 RES

    计费说明 计费项 RES服务根据用户使用的不同资源分别进行收费。 计费支持区域:华北-北京四。 由于RES使用的离线数据需存储在OBS中,数据存储产生的费用,请参见《OBS价格说明》。 表1 推荐系统计费项说明 计费项 说明 存储资源 应用于物品画像和用户画像的存储计费,对用户和物品的总条目数统计进行收费