检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
边缘服务 什么是边缘节点? 更新AI应用版本时,边缘服务预测功能不可用? 使用边缘节点部署边缘服务能否使用http接口协议? 父主题: 部署上线
GPU裸金属服务器无法Ping通如何解决 问题现象 在华为云使用GPU裸金属服务器时, 服务器绑定EIP(华为云弹性IP服务)后,出现无法ping通弹性公网IP现象。 原因分析 查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令
Verification successful 安装Gallery CLI配置工具 当Gallery CLI配置工具包下载完成后,进入服务器安装工具。不管是ModelArts Lite云服务,还是本地Windows/Linux等服务器,安装操作都相同。 登录服务器,激活python虚拟环境。 conda
--api 按照上述配置完参数后,单击右下角的立即创建, 完成AI应用的创建。 图5 填写参数(2) 当AI应用状态变为正常时,表示创建完成。 图6 AI应用创建完成 步骤五 部署服务 单击AI应用名称,进入AI应用详情页,单击部署在线服务。 图7 部署在线服务 填写如下服务部署参数。 名称:
推理部署计费项 计费说明 在ModelArts进行服务部署时,会产生计算资源和存储资源的累计值计费。计算资源为运行推理服务的费用。存储资源包括数据存储到OBS的计费。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。
查询支持的服务部署规格 功能介绍 查询支持的服务部署规格列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/services/specifications
自定义镜像导入模型部署上线调用API报错 部署上线调用API报错,排查项如下: 确认配置文件模型的接口定义中有没有POST方法。 确认配置文件里url是否有定义路径。例如:“/predictions/poetry”(默认为“/”)。 确认API调用中body体中的调用路径是否拼接
为什么选择不了Ascend Snt3资源? 由于Ascend Snt3资源有限,当资源售罄后,您在部署上线时,无法选择Ascend Snt3资源(公共资源池)进行推理,即在部署页面中,“Ascend: 1* Snt3 (8GB) | ARM: 3 核 6GB”资源为灰色,无法选择。
通过AK/SK认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功。部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。用户可以通过AK/SK签名认证方式调用API。 使用AK/SK认证时,您可以通过APIG SDK访问,也可以通过ModelArts
Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即可迅速创建弹性裸金属服务器,获取所需的云上物理资源,充分满足算法工程师在日常训练和推理工作中的需求。
该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
据和算法至OBS(首次使用时需要)。 ECS服务器和SFS的共享硬盘在相同的VPC或者对应VPC能够互联。 ECS服务器基础镜像需要用Ubuntu 18.04的。 ECS服务器和SFS Turbo需要在同一子网中。 操作步骤 在ECS服务器中设置华为云镜像源。 sudo sed -i
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不
G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资
G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资
PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
单击模型名称,进入模型详情页面,查看模型详情信息。 部署服务并查看详情 在模型详情页面,单击右上角“部署>在线服务”,进入服务部署页面,模型和版本默认选中,选择合适的“实例规格”(例如CPU:2核 8GB),其他参数可保持默认值,单击“下一步”,跳转至服务列表页,当服务状态变为“运行中”,服务部署成功。 单击服务名