检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。
atch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
ma2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装Eagle。 bash build.sh
运行过程中,ModelArts后台通过指标正则表达式获取搜索指标参数,朝指定的优化方向进行超参优化。用户需要在代码中打印搜索参数并在控制台配置以下参数。 图1 设置算法搜索功能 搜索指标 搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
odelArts提供了即开即用的云上集成开发环境,包含迁移所需要的算力资源、AI框架、昇腾开发套件以及迁移调优工具链,最大程度减少客户自行配置环境的复杂度。 范围 本文涉及PyTorch训练的单卡和分布式业务迁移到昇腾的业务范围。当前针对常见的开源LLM/AIGC等领域的开源模型
设置某一作业类型后,即可在此专属资源池中下发此种类型的作业,没有设置的作业类型不能下发。 为了支持不同的作业类型,后台需要在专属资源池上进行不同的初始化操作,例如安装插件、设置网络环境等。其中部分操作需要占据资源池的资源,导致用户实际可用资源减少。因此建议用户按需设置,避免不必要的资源浪费。 约束限制 专属资源池状态处于“运行中”。
“/home/ma-user/work”目录以及动态挂载在“/data”下的目录下的数据会保存,其余目录下内容会被清理。例如:用户在开发环境中的其他目录下安装的外部依赖包等,在Notebook停止后会被清理。您可以通过保存镜像的方式保留开发环境设置,具体操作请参考保存Notebook实例。 No
/home/ma-user/anaconda3/bin/activate /home/ma-user/anaconda3/envs/my-env 执行如下命令在my env里安装如下依赖包。 pip install ipykernel 如果遇到版本冲突,建议固定版本如下: pip install jupyter_core==5
String yaml文件内容。 请求示例 如下查询algorithm_type为hpo且algorithm_name为Bayes的yaml配置文件内容。 GET https://endpoint/v2/{project_id}/training-jobs/autosearch/y
py {数据集路径pokemon-dataset路径} meta_cap.json 创建default_config.yaml文件,并将以下配置粘贴进去。 compute_environment: LOCAL_MACHINE debug: false distributed_type:
必填,单击右边的“选择”,从容器镜像中选择上一步上传到SWR的镜像。 代码目录 选择训练代码文件所在的OBS目录。如果自定义镜像中不含训练代码则需要配置该参数,如果自定义镜像中已包含训练代码则不需要配置。 需要提前将代码上传至OBS桶中,目录内文件总大小要小于或等于5GB,文件数要小于或等于1000个,文件深度要小于或等于32。
algorithm_names Array of strings 该算法类型下所有算法的名称。 请求示例 查询自动化搜索作业支持的yaml配置模板的信息 GET https://endpoint/v2/{project_id}/training-jobs/autosearch/yaml-templates
其他函数相关说明 } ] // chat.completions 其他参数 ) 应用示例 示例一:在Dify中配置支持Function Calling的模型使用 示例二:通过Function Calling扩展大语言模型对外部环境的理解 父主题: 通过Function
用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 duration 否 Long 续订时长,推荐该参数在leaseReq中配置,若请求参数中包含duration,则忽略leaseReq的值,且实例自动停止类别为定时停止。(单位:毫秒)。 请求参数 表3 请求Body参数
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3