检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ILE表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 命令参数预览
当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。 创建Notebook时,如果选择使用云硬盘EVS存储配置,云硬盘EVS会一直收费,建议及时停止并删除Notebook,避免产品不必要的费用。 在创建Notebook时,默认会开启自动停止功能,在
本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
Turbo中的数据。 Notebook中安装依赖包并保存镜像 在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 您可以在Notebook中导入完代码之后,在Notebook运行sh
本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd
暂不支持Multi-Lora和投机推理场景。 multi-step参数设置 启动推理服务时,使用multi-step调度需要配置的参数如下表所示。 表1 开启multi-step调度参数配置 服务启动方式 配置项 取值类型 配置说明 offline num_scheduler_steps int 连续运行模型的步数。
本工具支持x86和ARM的系统环境,使用前需要安装以下软件。 表2 安装软件及步骤 软件 安装步骤 mindspore-lite 安装版本:2.2.10 下载地址:https://www.mindspore.cn/lite/docs/zh-CN/r2.2/use/downloads.html 需要下载的安装包与操作系统有关,请根据需要选择合适的安装包。
调试要点进行检查。 在Notebook列表,单击实例名称,进入实例详情页,查看Notebook实例配置信息。 挂载OBS并行文件系统:在Notebook实例详情页面,选择“存储配置”页签,单击“添加数据存储”,设置挂载参数。 设置本地挂载目录,在“/data/”目录下输入一个文件
训练作业导入模块时日志出现前两条报错信息,可能原因如下: 代码如果在本地运行,需要将“project_dir”加入到PYTHONPATH或者将整个“project_dir”安装到“site-package”中才能运行。但是在ModelArts可以将“project_dir”加入到“sys.path”中解决该问题。
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
只有当创建团队标注任务时,标注人员才会收到邮件。创建标注团队及添加标注团队的成员并不会发送邮件。 请确保您的邮箱已完成配置且配置无误。可参考管理成员,完成邮箱配置。 团队成员自检其邮箱是否有拦截设置。 父主题: Standard数据准备
-user/work以外的目录,请将数据集等放到work路径下,不要放到非work路径下。 请不要将实例频繁保存镜像,建议一次将需要的安装包安装好,然后执行镜像保存,避免频繁执行镜像保存的动作,保存次数越多镜像越大,且多次保存后的镜像过大问题无法通过清理磁盘方式减少镜像的大小(Docker保存原理机制)。
Turbo中的数据。 Notebook中安装依赖包并保存镜像 在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 通过运行install.sh脚本,会git
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 录制Profiling 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6