检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
节点监控 在运维监控页面左侧导航栏单击“监控>节点监控”,进入节点监控页面,该页面展示了节点,内存,磁盘,磁盘I/O,网络I/O的实时消耗情况。 概览 在概览页面,您可以根据节点名浏览指定节点的关键资源情况,包括:节点名称、CPU使用率(%)、内存使用率(%)、平均磁盘使用率(%
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 图引擎服务的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 图引擎服务的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京一
自动续费 自动续费可以减少手动续费的管理成本,避免因忘记手动续费而导致云服务器被自动删除。自动续费的规则如下所述: 云服务器自动续费周期根据您开通自动续费的途径不同,遵循不同的规则。 在图实例到期前均可开通自动续费,到期前7日凌晨3:00首次尝试自动续费,如果扣款失败,每天凌晨3
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。 适用场景 紧密中心度算法(Closeness
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。 参数说明 表1 关联预测算法(Link
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时序路径,从节点j到节点k有一条时序路径,并不能说明从节点i到节点k有一条时序路径。因此在求
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
是否考虑边的方向。取值为true或者false,默认值为true。 weight 否 String 边上权重,取值为空或字符串。 当某边没有对应属性时,权重将默认为1。 空:边上的权重、距离默认为“1"。 字符串:对应的边上的属性将作为权重。 说明: 不支持对缺失属性值的默认处理,会直接报错。
批量点查(1.1.9) 功能介绍 根据批量节点ID查询节点信息,返回这些节点的详情,包括标签和属性等。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/action?action_id=batch-query
批量点查 功能介绍 根据批量节点ID查询节点信息,返回这些节点的详情,包括标签和属性等。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/action?action_id=batch-query 表1 路径参数
sources:表示群体内包含的节点ID,最多可以输入十万个节点,节点之间需要用逗号隔开。 图1 群体演化模块 输入完成后,单击“群体演化”模块右侧的按钮,运行结果将在画布上展示。 图2 动态图展示 界面元素 说明 动态图的开始运行按钮。 动态图的播放方向,默认开启为正向播放,关闭后为反向播放。
图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 如果点被删除了,基于该点的边会自动删除。 父主题:
根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1.0/{project_
根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
source 是 输入路径的起点ID String - - target 是 输入路径的终点ID String - - directed 否 是否考虑边的方向 Bool true或false false weight 否 边上权重 String 空或字符串 空:边上的权重、距离默认为“1”。
SDK)是对GES提供的REST API进行的封装,以简化用户的开发工作。 SDK 业务面SDK 管理面SDK Cypher JDBC Driver访问GES 02 购买 GES的计费简单、易于预测,您既可以选择按照小时费率计费的按需计费方式,也可以选择更经济的预付费实例计费方式。