检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包括predictor configs结构和transformer configs 服务配置,不设置此参数时,表示不更新。关于configs如何生成,请参见部署在线服务。 更新服务配置时,存在以下约束: 参数status指定的目标状态不允许和当前服务状态相同。 当前服务状态是dep
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 全参训练(Full):这种策略主要对整个模型进行微调。这
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink
准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Lite Cluster适配ModelLink
准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个
出于分析或审计等目的,用户可以开启ModelArts的日志记录功能。在您开启了云审计服务后,系统会记录ModelArts的相关操作,且控制台保存最近7天的操作记录。本节介绍如何在云审计服务管理控制台查看最近7天的操作记录。 对接云审计服务的配置方法请参见查看审计日志章节。 父主题: 安全
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明