检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。 登录“我的凭
在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情
模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致过拟合;训练轮数越小,模型学习数据的迭代步数就越少,过低则会导致欠拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。 如果您没有
输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,
分配标注任务时,可以选择是否启用多人标注。启用多人标注后,可以指定参与标注的人员。 标注任务可选择是否启用标注审核,可设置多人审核,详见审核文本类数据集标注结果。审核要求可以选择以下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。
在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情
基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的
在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情
标注任务可选择是否启用标注审核,可设置多人审核,详见审核文本类数据集标注结果。审核要求可以选择以下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。
标注任务可选择是否启用标注审核,可设置多人审核,详见审核文本类数据集标注结果。审核要求可以选择以下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。 图2 预置文本类数据集评估标准 在“评估标准”页面单击右上角“创建评估标准”,选择预置标准作为参考项,并填写“评估标准名称”和“描述”。 单击“下一步”,编辑评估项。 用户可以基于实际需求删减评估项,或创建自定义评估
质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。 图2 预置视频类数据集评估标准 在“评估标准”页面单击右上角“创建评估标准”,选择预置标准作为参考项,并填写“评估标准名称”和“描述”。 单击“下一步”,编辑评估项。 用户可以基于实际需求删减评估项,或创建自定义评估
绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型
质量标准 V1.0”,单击评估标准名称,可以查看具体的评估项。 图2 预置图片类数据集评估标准 在“评估标准”页面单击右上角“创建评估标准”,选择预置标准作为参考项,并填写“评估标准名称”和“描述”。 单击“下一步”,编辑评估项。 用户可以基于实际需求删减评估项,或创建自定义评估
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对,以查看其效果。 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发
当数据集中存在异常数据、噪声数据、或不符合分析需求的数据时,可以通过加工数据集进行处理,包括但不限于数据提取、过滤、转换、打标签等操作。 上线加工后的数据集 对加工后的数据集执行上线操作。 标注数据集(可选) 创建数据集标注任务 创建数据集标注任务,并对数据集执行标注操作,标注后的数据可以用于模型训练。 审核数据集标注结果
涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测