检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服务器的实际使用情况每小时出账单,并从账户余额里扣款。 父主题: 计费FAQ
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样值越大,输出
t":"context内容1","target":"target内容1"},{"context":"context内容2","target":"target内容2"}],其中context、target分别表示问题、答案。 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可
在东西方向patch_size[2]*window_size[2]需能整除1440。 多头注意力头数 用于定义多头注意力机制中的头数。在设置这个参数时,需要注意init_channels要能够整除num_heads里的两个数。取值需大于1。 第一层的通道数量 用于定义卷积神经网络中第一层卷积核的数量。在
HTTP请求方法,表示服务正在请求操作类型,包括: GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样值越大,输出的
2024年11月发布的版本,仅支持128K序列长度推理,4卡2并发。 Pangu-NLP-N1-128K-3.2.36 128K 4K 2025年1月发布的版本,仅支持128K序列长度推理,4个推理单元8并发。 Pangu-NLP-N2-Base-20241030 - 4K 2024年1
某些“小便宜”,然后通过木马程序来控制用户的主机。\n2. 通过网站入侵: \n如果目标主机是一台网络服务器,可以通过找上传漏洞,然后传木马上去。如果没有上传漏洞,可以通过找SQL注入,进入后台,上传木马,提取,控制目标服务器。"} {"context":["我们来玩角色扮演游戏
应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着
{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。
除了短视频风格的口播文案,营销文案还可以根据需求生成不同风格的文案,如小红书风格、知乎风格,或爆款标题等。 选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型的
操作步骤 说明 准备工作 说明创建边缘资源池的前期准备。 步骤1:注册边缘资源池节点 说明注册边缘资源池节点步骤。 步骤2:搭建边缘服务器集群 说明搭建边缘服务器集群的步骤。 步骤3:安装Ascend插件 说明安装Ascend插件指导。 步骤4:创建证书 说明创建负载均衡所需证书步骤。
所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。 配额限制 盘古大模型服务的配额限制详见表2。 表2 配额限制 资源类型 默认配额限制 是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0
用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训练效果。目前支持CosineDecayLR调度器。 变量权重 2米温度 海表面2m温度 (℃)的权重设置。训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 10米U风 海表面1
配置提示词步骤如下: 在“提示词”模块,可依据模板填写Prompt,单击“”,输入框中将自动填入角色指令模板。 示例如图2,您可以依据模板进行填写。 图2 配置Prompt 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 步骤3:添加预置插件
get('input1') # 注意在输入参数中定义名为input2的变量 input2 = args.get('input2') res = { # 注意在输出参数中定义名为res的变量 "res": input1 + input2, } return res 复杂逻辑判断示例代码。 def
更真实和简洁的答案;在创造性的任务例如小说创作,可以适当调高回复随机性数值。建议不要与核采样同时调整。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值。核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性,取值范围为0.1到1之间。
"project": { "name": "cn-southwest-2" //盘古大模型当前部署在“西南-贵阳一”区域,取值为cn-southwest-2 } } } } Python import