检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
昇腾云服务6.3.909版本说明 本文档主要介绍昇腾云服务6.3.909版本配套的镜像地址、软件包获取方式和支持的特性能力。 当前版本仅适用于华为公有云。 配套的基础镜像 芯片 镜像地址 获取方式 镜像软件说明 配套关系 Snt9B 西南-贵阳一 PyTorch: swr.cn-southwest
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
管理训练容器环境变量 什么是环境变量 本章节展示了训练容器环境中预置的环境变量,方便用户查看,主要包括以下类型。 路径相关环境变量 分布式训练任务环境变量 NCCL(Nvidia Collective multi-GPU Communication Library)环境变量 OBS
约束与限制 本节介绍ModelArts服务在使用过程中的约束和限制。 规格限制 表1 规格说明 资源类型 规格 说明 计算资源 所有按需计费、包年/包月、套餐包中的计算资源规格,包括CPU、GPU和NPU 购买的所有类型的计算资源均不支持跨Region使用。 计算资源 套餐包 套餐包仅用于公共资源池
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908
GPU服务器上配置Lite Server资源软件环境 场景描述 本文旨在指导如何在GPU裸金属服务器上,安装NVIDIA、CUDA驱动等环境配置。由于不同GPU预置镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件安装步骤
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909
SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.908) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行
SDXL基于Standard适配PyTorch NPU的LoRA训练指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助生成图像。SDXL LoRA是指在已经训练好的SDXL模型基础上,使用新的数据集进行LoRA
NPU服务器上配置Lite Server资源软件环境 场景描述 本文旨在指导如何在Snt9b裸金属服务器上,进行磁盘合并挂载、安装docker等环境配置。在配置前请注意如下事项: 首次装机时需要配置存储、固件、驱动、网络访问等基础内容,这部分配置尽量稳定减少变化。 裸机上的开发形式建议开发者启动独立的
InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展InternVL2-26B和InternVL2-8B模型的训练过程,包括
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Ascend-Powered-Engine
Lite Server资源开通 图1 Server资源开通流程图 表1 Server资源开通流程 阶段 任务 准备工作 1、申请开通资源规格。 2、资源配额提升。 3、基础权限开通。 4、配置ModelArts委托授权。 5、创建虚拟私有云。 6、创建密钥对。(可选,若为密码登录方式则不需要
Wav2Lip基于DevServer适配PyTorch NPU训练指导(6.3.902) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,
在ModelArts Standard运行GPU训练任务的准备工作 使用ModelArts Standard的专属资源池训练时,需要完成以下准备工作。 购买服务资源 表1 购买服务资源 服务 使用说明 参考文档 弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长收费
使用ModelArts VS Code插件调试训练ResNet50图像分类模型 应用场景 Notebook等线上开发工具工程化开发体验不如IDE,但是本地开发服务器等资源有限,运行和调试环境大多使用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本。
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网
创建Notebook实例 在开始进行模型开发前,您需要创建Notebook实例,并打开Notebook进行编码。 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情
以PyTorch框架创建训练作业(新版训练) 本节通过调用一系列API,以训练模型为例介绍ModelArts API的使用流程。 概述 使用PyTorch框架创建训练作业的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用获取训练作业支持的公共规格接口获取训练作业支持的资源规格
非分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源