检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
copy_parallel(local_data_dir, obs_data_dir) 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度
通过阅读本文,您可以快速了解ModelArts的计费模式、计费项、续费、欠费等主要计费信息。 计费模式 ModelArts提供包年/包月和按需计费两种计费模式,以满足不同场景下的用户需求。 包年/包月是一种预付费模式,即先付费再使用,按照订单的购买周期进行结算,因此在购买之前,您必须确保账户余额充足。 按需
odelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
a_dir, obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度
ModelArts开发环境针对推理昇腾迁移的场景提供了云上可以直接访问的开发环境,具有如下优点: 利用云服务的资源使用便利性,可以直接使用到不同规格的昇腾设备。 通过指定对应的运行镜像,可以直接使用预置的、在迁移过程中所需的工具集,且已经适配到最新的版本可以直接使用。 开发者可以通
a_dir, obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度
式将其划分为不同的类,其目的是通过分类模型,将数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。 聚类 聚类是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据
sh scripts/llama2/0_pl_pretrain_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致;其中MASTER_ADDR、 NNODES、 NODE_RANK 为必填。 单机启动 对于Llama2-7B和Lla
a_dir, obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型
data_sources=None, work_path=None, **kwargs) 根据数据类型创建数据集,用户可以在相同的数据集上创建不同类型的标注任务,如在图像数据集上创建图像分类、物体检测等标注任务。 create_dataset(session,dataset_name=None
rts分身”,您可以通过菜单栏的左上角进行工作空间的切换,不同工作空间中的工作互不影响。ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 远程接入管理 使用本地IDE
量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权重比例将预测请求转发到对应的模型版本实例。 deploy_timeout_in_seconds
json存在模型对应的路径下,例如:${container_work_dir}/chatglm3-6b/config.json。不同模型推理支持的max-model-len长度不同,具体差异请参见附录:基于vLLM不同模型推理支持最小卡数和最大序列说明。 --max-num-batched-tokens:pref
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
新训练如未解决则执行下一步。 - ZeRO-0 数据分布到不同的NPU - ZeRO-1 Optimizer States分布到不同的NPU - ZeRO-2 Optimizer States、Gradient分布到不同的NPU - ZeRO-3 Optimizer States、Gradient、Model
API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式、访问通道、传输协议,以上三个要素共同构成您的访问请求,三者可自由组合互不影响(例如不同的认证方式可以搭配不同的访问通道、不同的传输协议)。 图1 认证方式、访问通道、传输协议 当前ModelArts支持访问在线服务的认证方式有以下方式(案例中均以HTTPS请求为例):
启动团队标注任务 登录到console标注页面后在“我参与的”页签下,可查看到分配的标注任务,单击任务名称,可进入标注页面。不同类型的标注作业,标注方式不同,详细请参见: 标注图片(图像分类) 标注图片(物体检测) 标注文本(文本分类) 标注文本(命名实体) 标注文本(文本三元组)
odelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。
主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。主要应用场景如下: 可以用于需要根据不同的输入值来决定后续执行流程的场景。例如:需要根据训练节点输出的精度信息来决定是重新训练还是进行模型的注册操作时可以使用该节点来实现流程的控制。