检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
6-gpu"。修改完成后,重新执行导入模型和部署为在线服务的操作。 参数设置完成后,单击“下一步”,确认规格参数,单击“提交”,完成在线服务的部署。 您可以进入“模型部署 > 在线服务”页面,等待服务部署完成,当服务状态变为“运行中”时,表示服务部署成功。预计时长2分钟左右。 在线服务部署完成后,您可以单
发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 在线服务 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。将模型部署为一个Web Service,并且提供在线的测试UI与监控能力。 发布区域:华北-北京一、华北-北京四、华北-乌
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择s
Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择s
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。 例如您的AI应用是Pytorch框架,部署为在线服务时出现告警:ModuleNotFoundError: No module named ‘model_service.tfserving
型部署为一个在线服务,如果由于配额限制(即在线服务的个数超出配额限制),导致无法将模型部署为服务。此时会在自动学习项目中提示“部署上线任务提交失败”的错误。 修改建议 方法1:进入“部署上线>在线服务”页面,将不再使用的服务删除,释放资源。 方法2:如果您部署的在线服务仍需继续使用,建议申请增加配额。
绪”时表示模型可以使用。 步骤3:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值,此处以“商超商品识别服务”为例。
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 图1 添加标签 用户也可以在ModelArts任务中添加标签
可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 在ModelArts的专属资源池中添加标签。 可以在创建弹性
删除服务存在如下两种删除方式。 根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
示例:使用公共资源池。计费项:计算资源费用 + 存储费用 假设用户于2023年4月1日10:00:00创建了一个使用公共资源池的在线服务,规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.50 元/小时),并在11:00:00停止运行。按照计算资源费用、存储费用结算,那么运行这个在线服务的费用计算如下:
32GB、计算节点个数为1个(单价:3.40 元/小时);服务部署时选择资源池规格为CPU: 8 核 32GB、计算节点个数为1个(单价:3.50 元/小时)。按照计算资源费用、存储费用结算,那么运行这个自动学习作业的费用计算过程如下: 计算资源费用 = 规格单价 * 计算节点个数
型大于60G,请提工单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模
Standard的训练过程,训练使用PyTorch框架和昇腾NPU计算资源。 训练后的模型可用于推理部署,搭建大模型问答助手。 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理部署、推理性能测试、推理精度测试、推理模型量化 介绍主流的开源大模型Llama
服务管理 服务管理概述 在开发环境中部署本地服务进行调试 部署在线服务 查询服务详情 推理服务测试 查询服务列表 查询服务对象列表 更新服务配置 查询服务监控信息 查询服务日志 删除服务
实例时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 Notebook实例停止运行时,EVS还会持续计费,需及时删除才能停止EVS计费。 计算资源费用: 如果运行Notebook实例时,使用专属资源池进行模型训练和推理,计算资源不计费。 如