检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算等技术手段识别并保护敏感数据,有效防止隐私泄露,保障个人隐私数据安全。 内容安全:通过预训练和强化学习价值观提示(prompt),构建正向
部署盘古大模型 部署为在线服务 部署为边缘服务
独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以默认
API NLP大模型 Token计算器
@huaweicloud/huaweicloud-sdk-core npm i @huaweicloud/huaweicloud-sdk-pangulargemodels 在线生成SDK代码 API Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explor
进行更新。这种方法通常会带来最优的模型性能,但需要大量的计算资源和时间,计算开销较高。 局部微调(LoRA):在模型微调过程中,只对特定的层或模块的参数进行更新,而其余参数保持冻结状态。这种方法在很多情况下可以显著减少计算资源和时间消耗,且依旧可以保持较好的模型性能。 训练模型
表明模型性能越好。 指标看板介绍 指标看板使用BLEU指标评价模型,其核心思想是计算准确率。例如,给定一个标准译文(reference)和一个算法生成的句子(candidate),BLEU-1的计算公式为候选句中出现于标准译文中的单词数(m)与候选句总单词数(n)的比值,即m/n
令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个Token:“over”和“weight”。在中文中,
Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。
打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。 评估数据: 选择已创建并发布的评估数据集。 基本信息: 输入任务的名称和描述。 单击“立即创建”,创建一个模型评估任务。 父主题:
云租户的安全责任在于对使用的IaaS、PaaS和SaaS类云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机和访客虚拟机的操作系统,虚拟防火墙、API网关和高级安全服务,各项云服务,租户数据,以及身份账号和密钥管理等方面的安全配置。 《华为云安全
时,模型能够更快地生成结果,减少等待时间,从而提升用户体验。这种快速的推理能力使盘古大模型适用于广泛的应用场景。在需要实时反馈的业务中,如在线客服和智能推荐,盘古大模型能够迅速提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题: 进阶技巧
可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据
可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据
api.embeddings.factory import Embeddings # redis向量 # 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0
模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是
import org.junit.jupiter.api.Assertions; //redis向量 // 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 // 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0
表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge.4镜像 EulerOS 2.9 64bit with ARM for Tenant 20230728
推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型 迁移盘古大模型 应用开发工具链 应用开发工具链是盘古大模型平台的关键模块,支持提示词工程和智能Agent应用创建。