检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求
构建流程 准备工作 为确保有可用的NLP大模型,请先完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 为使该实践效果更优,建议部署盘古NLP大模型的N4系列模型。
大模型使用类 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的单个文件进行上传 如何查看预置模型的历史版本 训练/推理单元与算力的对应关系是什么
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的获取、加工、合成、标注、配比、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。 要查看预置模型的历史版本,您可以按照以下步骤操作: 进入平台的“空间资产 > 模型 > 预置”页面。
什么是提示词工程 提示词工程简介 提示词工程(Prompt Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不
管理盘古数据资产 数据资产介绍 数据资产是指在平台中被纳入管理、存储并可供使用的数据集。 数据资产包含以下两种形式: 用户自行发布的数据集。 用户可以通过“数据工程 > 数据发布 > 数据流通”功能将数据集发布为数据资产。发布的数据集支持查看详细信息、编辑、删除以及发布至AI Gallery等操作。
开发盘古大模型Agent应用 Agent开发平台介绍 编排与调用应用 编排与调用工作流 创建与管理插件 创建与管理知识库 Agent开发常见报错与解决方案
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
训练参数优化 科学计算大模型的训练参数调优可以考虑学习率参数,学习率(Learning Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致
微调场景介绍 盘古科学计算大模型的区域海洋要素模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。 目前,区域海洋要素模型支持微调、预训练两种操作: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以
管理盘古工作空间成员 如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。
导入数据过程中,为什么无法选中OBS的单个文件进行上传 当前,ModelArts Studio平台针对不同类别的数据集可使用OBS服务导入的文件形式不同: 文本、视频、预测和其他类(自定义)数据集支持文件夹或单个文件导入,导入界面提示用户:“请选择文件夹或文件”。 图1 支持导入单个文件示例
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容
获取模型部署ID 模型部署ID获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
构建微调训练任务数据集 获取源数据 科学计算大模型微调训练所需的数据为气象再分析数据。 气象再分析数据集是利用现代数值天气预报模型和数据同化系统,对过去的观测数据进行重新处理后得到的。这些数据集可以是全球范围的,也可以是特定区域的。再分析数据集的目的是通过整合历史观测数据和现代计
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF