检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户指南(旧版) 准备工作 RES操作流程 管理资源 全局配置 离线作业 近线作业 在线服务 服务总览信息 数据格式规范
算法介绍及参数说明 召回策略 过滤规则 排序策略-离线特征工程 排序策略-离线排序模型 在线服务 效果评估 父主题: 自定义场景
使用于在线服务,为用户生成推荐列表。当作业“状态”变为“计算失败”时,您可以单击作业的名称,进入详情页面,通过查看日志等手段处理问题。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的
数据在OBS的存放路径。包括用户属性表、物品属性表、用户操作行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。
什么是RES? 与其他云服务的关系 如何开始使用RES? 获取访问密钥(AK/SK) 推荐作业有哪几种创建方式? 创建的场景是否会立即发布? 最小在线并发规格支持弹性伸缩,是否设置最小规格即可? 是否有样例数据支撑我进一步了解RES? 什么是区域、可用区? API查询列表的接口返回结果是否支持分页?
online_job_uuid 是 String 关联的在线服务的uuid。 flow_name 是 String 关联在线服务的其中一个在线流程的名称。流式训练作业所需的行为参数、模型文件路径、数据预处理信息等参数会从指定的在线服务的在线流程中获取。 online_training_config
读取配置源文件来进行离线计算。 资源名,指定DLI运行作业的资源规格。 存储平台 服务名称,CloudTable作为存储平台,用于用户推荐在线数据和推荐候选集的存储。 集群名称,选择“资源中心”绑定的CloudTable集群名称。 表名,存储的表格名称。 过滤规则别名 自定义过滤
场景式推荐 提供多维度的场景推荐,含猜你喜欢、关联推荐、热门推荐,一键式操作,降低客户接入门槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户、以物品推荐物品、以物品推荐用户四种全面的推荐对象,用户根据场景选择不同的推荐实体。
基于用户历史行为计算物品相似性,实时更新候选列表,提升用户体验,提高转化率支持多种召回、过滤、排序算子自由组合,训练形式上支持离线批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。
DLI集群建议创建跨源连接,通过RPC方式访问,提高读写性能。 开通存储平台CloudTable CloudTable作为存储平台,用于用户推荐在线数据和推荐候选集的存储。在使用推荐系统之前,您需要开通表格存储服务(CloudTable Service)来创建集群。 登录华为云。在华为
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval 否 Integer 更新周期(在线训练任务需要提供此参数)。 optimizer 否 Optimizer object 优化器(在线训练任务需要提供此参数)。 flows 否 Flow object 在线流程(在线训练任务需要提供此参数)。
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。
否 traceId String 用于追踪每个被推荐物品的唯一ID。用于推荐效果的计算。 否 flowId String 用于计算每一个在线服务的效果。flowId由推荐系统的API返回给用户,用户需把flowId写到用户行为日志中。 否 实时行为日志示例 { "userId":
离线排序作业名称(在线训练任务需要提供此参数)。 update_interval Integer 更新周期(在线训练任务需要提供此参数)。 optimizer Optimizer object 优化器(在线训练任务需要提供此参数)。 flows Flow object 在线流程(在线训练任务需要提供此参数)。
每个算法有其各自的参数列表,包括初始化、最优化、正则项等参数。 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。
时结合用户的长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中率高,用户粘性增强,PV增幅明显。
览。 否 traceId String 用于追踪每个被推荐物品的唯一ID。用于效果的计算。 否 flowId String 用于计算每一个在线服务的效果。flowId由推荐系统的API返回给用户,用户需把flowId写到用户行为日志中。 否 用户操作行为示例 { "userId":"user1"